homogenization/linear_elasticity_opt.py¶
Description
missing description!
from __future__ import absolute_import
import numpy as nm
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy import data_dir
def mesh_hook(mesh, mode):
if mode == 'read':
mesh = gen_block_mesh([0.0098, 0.0011, 0.1], [5, 3, 17],
[0, 0, 0.05], name='specimen',
verbose=False)
return mesh
elif mode == 'write':
pass
def optimization_hook(pb):
cnf = pb.conf
out = []
yield pb, out
state = out[-1][1].get_state_parts()
coors = pb.domain.cmesh.coors
displ = state['u'].reshape((coors.shape[0],3))
# elongation
mcoors = coors[cnf.mnodes, 2]
mdispl = displ[cnf.mnodes, 2]
dl = (mdispl[1] - mdispl[0]) / (mcoors[1] - mcoors[0])
if hasattr(cnf, 'opt_data'):
# compute slope of the force-elongation curve
cnf.opt_data['k'] = cnf.F / dl
yield None
def get_mat(coors, mode, pb):
if mode == 'qp':
# get material data
if hasattr(pb.conf, 'opt_data'):
# from homogenization
D = pb.conf.opt_data['D_homog']
else:
# given values
D = stiffness_from_youngpoisson(3, 150.0e9, 0.3)
nqp = coors.shape[0]
return {'D': nm.tile(D, (nqp, 1, 1))}
def define(is_opt=False):
filename_mesh = UserMeshIO(mesh_hook)
mnodes = (107, 113) # nodes for elongation eval.
regions = {
'Omega': 'all',
'Bottom': ('vertices in (z < 0.001)', 'facet'),
'Top': ('vertices in (z > 0.099)', 'facet'),
}
functions = {
'get_mat': (lambda ts, coors, mode=None, problem=None, **kwargs:
get_mat(coors, mode, problem),),
}
S = 1.083500e-05 # specimen cross-section
F = 5.0e3 # force
materials = {
'solid': 'get_mat',
'load': ({'val': F / S},),
}
fields = {
'displacement': ('real', 'vector', 'Omega', 1),
}
variables = {
'u': ('unknown field', 'displacement', 0),
'v': ('test field', 'displacement', 'u'),
}
ebcs = {
'FixedBottom': ('Bottom', {'u.all': 0.0}),
'FixedTop': ('Top', {'u.0': 0.0, 'u.1': 0.0}),
}
equations = {
'balance_of_forces' :
"""dw_lin_elastic.5.Omega(solid.D, v, u)
= dw_surface_ltr.5.Top(load.val, v)""",
}
solvers = {
'ls': ('ls.scipy_direct', {}),
'newton': ('nls.newton', {'eps_a': 1e-6, 'eps_r': 1.e-6,
'check': 0, 'problem': 'nonlinear'}),
}
options = {
'parametric_hook': 'optimization_hook',
'output_dir' : 'output',
}
return locals()