homogenization/linear_homogenization.py¶
Description
Compute homogenized elastic coefficients for a given heterogeneous linear elastic microstructure.
See [1] for details or [2] and [3] for a quick explanation.
[1] D. Cioranescu, J.S.J. Paulin: Homogenization in open sets with holes. Journal of Mathematical Analysis and Applications 71(2), 1979, pages 590-607. https://doi.org/10.1016/0022-247X(79)90211-7
[2] J. Pinho-da-Cruz, J.A. Oliveira, F. Teixeira-Dias: Asymptotic homogenisation in linear elasticity. Part I: Mathematical formulation and finite element modelling. Computational Materials Science 45(4), 2009, pages 1073-1080. http://dx.doi.org/10.1016/j.commatsci.2009.02.025
[3] J. Pinho-da-Cruz, J.A. Oliveira, F. Teixeira-Dias: Asymptotic homogenisation in linear elasticity. Part II: Finite element procedures and multiscale applications. Computational Materials Science 45(4), 2009, pages 1081-1096. http://dx.doi.org/10.1016/j.commatsci.2009.01.027
r"""
Compute homogenized elastic coefficients for a given heterogeneous linear
elastic microstructure.
See [1] for details or [2] and [3] for a quick explanation.
[1] D. Cioranescu, J.S.J. Paulin: Homogenization in open sets with holes.
Journal of Mathematical Analysis and Applications 71(2), 1979, pages 590-607.
https://doi.org/10.1016/0022-247X(79)90211-7
[2] J. Pinho-da-Cruz, J.A. Oliveira, F. Teixeira-Dias:
Asymptotic homogenisation in linear elasticity.
Part I: Mathematical formulation and finite element modelling.
Computational Materials Science 45(4), 2009, pages 1073-1080.
http://dx.doi.org/10.1016/j.commatsci.2009.02.025
[3] J. Pinho-da-Cruz, J.A. Oliveira, F. Teixeira-Dias:
Asymptotic homogenisation in linear elasticity.
Part II: Finite element procedures and multiscale applications.
Computational Materials Science 45(4), 2009, pages 1081-1096.
http://dx.doi.org/10.1016/j.commatsci.2009.01.027
"""
from __future__ import absolute_import
import sfepy.discrete.fem.periodic as per
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.homogenization.utils import define_box_regions
import sfepy.homogenization.coefs_base as cb
from sfepy import data_dir
from sfepy.base.base import Struct
from sfepy.homogenization.recovery import compute_micro_u,\
compute_stress_strain_u, compute_mac_stress_part
def recovery_le(pb, corrs, macro):
out = {}
dim = corrs['corrs_le']['u_00'].shape[1]
mic_u = - compute_micro_u(corrs['corrs_le'], macro['strain'], 'u', dim)
out['u_mic'] = Struct(name='output_data',
mode='vertex', data=mic_u)
stress_Y, strain_Y = \
compute_stress_strain_u(pb, 'i', 'Y', 'mat.D', 'u', mic_u)
stress_Y += \
compute_mac_stress_part(pb, 'i', 'Y', 'mat.D', 'u', macro['strain'])
strain = macro['strain'] + strain_Y
out['cauchy_strain'] = Struct(name='output_data',
mode='cell', data=strain)
out['cauchy_stress'] = Struct(name='output_data',
mode='cell', data=stress_Y)
return out
filename_mesh = data_dir + '/meshes/3d/matrix_fiber.mesh'
dim = 3
region_lbn = (0, 0, 0)
region_rtf = (1, 1, 1)
regions = {
'Y': 'all',
'Ym': 'cells of group 1',
'Yc': 'cells of group 2',
}
regions.update(define_box_regions(dim, region_lbn, region_rtf))
materials = {
'mat': ({'D': {'Ym': stiffness_from_youngpoisson(dim, 7.0e9, 0.4),
'Yc': stiffness_from_youngpoisson(dim, 70.0e9, 0.2)}},),
}
fields = {
'corrector': ('real', dim, 'Y', 1),
}
variables = {
'u': ('unknown field', 'corrector', 0),
'v': ('test field', 'corrector', 'u'),
'Pi': ('parameter field', 'corrector', 'u'),
'Pi1': ('parameter field', 'corrector', '(set-to-None)'),
'Pi2': ('parameter field', 'corrector', '(set-to-None)'),
}
functions = {
'match_x_plane': (per.match_x_plane,),
'match_y_plane': (per.match_y_plane,),
'match_z_plane': (per.match_z_plane,),
}
ebcs = {
'fixed_u': ('Corners', {'u.all': 0.0}),
}
if dim == 3:
epbcs = {
'periodic_x': (['Left', 'Right'], {'u.all': 'u.all'},
'match_x_plane'),
'periodic_y': (['Near', 'Far'], {'u.all': 'u.all'},
'match_y_plane'),
'periodic_z': (['Top', 'Bottom'], {'u.all': 'u.all'},
'match_z_plane'),
}
else:
epbcs = {
'periodic_x': (['Left', 'Right'], {'u.all': 'u.all'},
'match_x_plane'),
'periodic_y': (['Bottom', 'Top'], {'u.all': 'u.all'},
'match_y_plane'),
}
all_periodic = ['periodic_%s' % ii for ii in ['x', 'y', 'z'][:dim]]
integrals = {
'i': 2,
}
options = {
'coefs': 'coefs',
'requirements': 'requirements',
'ls': 'ls', # linear solver to use
'volume': {'expression': 'ev_volume.i.Y(u)'},
'output_dir': 'output',
'coefs_filename': 'coefs_le',
'recovery_hook': 'recovery_le',
}
equation_corrs = {
'balance_of_forces':
"""dw_lin_elastic.i.Y(mat.D, v, u) =
- dw_lin_elastic.i.Y(mat.D, v, Pi)"""
}
expr_coefs = """dw_lin_elastic.i.Y(mat.D, Pi1, Pi2)"""
coefs = {
'D': {
'requires': ['pis', 'corrs_rs'],
'expression': expr_coefs,
'set_variables': [('Pi1', ('pis', 'corrs_rs'), 'u'),
('Pi2', ('pis', 'corrs_rs'), 'u')],
'class': cb.CoefSymSym,
},
'filenames': {},
}
requirements = {
'pis': {
'variables': ['u'],
'class': cb.ShapeDimDim,
'save_name': 'corrs_pis',
},
'corrs_rs': {
'requires': ['pis'],
'ebcs': ['fixed_u'],
'epbcs': all_periodic,
'equations': equation_corrs,
'set_variables': [('Pi', 'pis', 'u')],
'class': cb.CorrDimDim,
'save_name': 'corrs_le',
'is_linear': True,
},
}
solvers = {
'ls': ('ls.auto_direct', {'use_presolve' : True}),
'newton': ('nls.newton', {
'i_max': 1,
'eps_a': 1e-4,
})
}