multi_physics/piezo_elastodynamic.py

Description

The linear elastodynamics of a piezoelectric body loaded by a given base motion.

The generated voltage between the bottom and top surface electrodes is recorded and plotted. The scalar potential on the top surface electrode is modeled using a constant L^2 field. The Nitsche’s method is used to weakly apply the (unknown) potential Dirichlet boundary condition on the top surface.

Find the displacements \ul{u}(t), the potential p(t) and the constant potential on the top electrode \bar p(t) such that:

\int_\Omega \rho\ \ul{v} \cdot \ul{\ddot u}
+ \int_\Omega C_{ijkl}\ \veps_{ij}(\ul{v}) \veps_{kl}(\ul{u})
- \int_\Omega e_{kij}\ \veps_{ij}(\ul{v}) \nabla_k p
= 0
\;, \quad \forall \ul{v} \;,

\int_\Omega e_{kij}\ \veps_{ij}(\ul{u}) \nabla_k q
+ \int_\Omega \kappa_{ij} \nabla_i \psi \nabla_j p
- \int_{\Gamma_{top}} \kappa_{ij} \nabla_j p n_i q
+ \int_{\Gamma_{top}} \kappa_{ij} \nabla_j q n_i (p - \bar p)
+ \int_{\Gamma_{top}} k q (p - \bar p)
= 0
\;, \quad \forall q \;,

\int_{\Gamma_{top}} \kappa_{ij} \nabla_j \dot{p} n_i + \bar p / R = 0 \;,

where C_{ijkl} is the matrix of elastic properties under constant electric field intensity, e_{kij} the piezoelectric modulus, \kappa_{ij} the permittivity under constant deformation, k a penalty parameter and R the external circuit resistance (e.g. of an oscilloscope used to measure the voltage between the electrodes).

Usage Examples

Run with the default settings, results stored in output/piezo-ed/:

sfepy-run sfepy/examples/multi_physics/piezo_elastodynamic.py

The define() arguments, see below, can be set using the -d option:

sfepy-run sfepy/examples/multi_physics/piezo_elastodynamic.py -d "order=2, ct1=2.5"

View the resulting potential p on a deformed mesh (2000x magnified):

sfepy-view output/piezo-ed/user_block.h5 -f p:wu:f2000:p0 1:vw:wu:f2000:p0 --color-map=inferno
../_images/multi_physics-piezo_elastodynamic1.png

source code

r"""
The linear elastodynamics of a piezoelectric body loaded by a given base
motion.

The generated voltage between the bottom and top surface electrodes is recorded
and plotted. The scalar potential on the top surface electrode is modeled using
a constant L^2 field. The Nitsche's method is used to weakly apply the
(unknown) potential Dirichlet boundary condition on the top surface.

Find the displacements :math:`\ul{u}(t)`, the potential :math:`p(t)` and the
constant potential on the top electrode :math:`\bar p(t)` such that:

.. math::
    \int_\Omega \rho\ \ul{v} \cdot \ul{\ddot u}
    + \int_\Omega C_{ijkl}\ \veps_{ij}(\ul{v}) \veps_{kl}(\ul{u})
    - \int_\Omega e_{kij}\ \veps_{ij}(\ul{v}) \nabla_k p
    = 0
    \;, \quad \forall \ul{v} \;,

    \int_\Omega e_{kij}\ \veps_{ij}(\ul{u}) \nabla_k q
    + \int_\Omega \kappa_{ij} \nabla_i \psi \nabla_j p
    - \int_{\Gamma_{top}} \kappa_{ij} \nabla_j p n_i q
    + \int_{\Gamma_{top}} \kappa_{ij} \nabla_j q n_i (p - \bar p)
    + \int_{\Gamma_{top}} k q (p - \bar p)
    = 0
    \;, \quad \forall q \;,

    \int_{\Gamma_{top}} \kappa_{ij} \nabla_j \dot{p} n_i + \bar p / R = 0 \;,

where :math:`C_{ijkl}` is the matrix of elastic properties under constant
electric field intensity, :math:`e_{kij}` the piezoelectric modulus,
:math:`\kappa_{ij}` the permittivity under constant deformation, :math:`k` a
penalty parameter and :math:`R` the external circuit resistance (e.g. of an
oscilloscope used to measure the voltage between the electrodes).

Usage Examples
--------------

Run with the default settings, results stored in ``output/piezo-ed/``::

  sfepy-run sfepy/examples/multi_physics/piezo_elastodynamic.py

The :func:`define()` arguments, see below, can be set using the ``-d`` option::

  sfepy-run sfepy/examples/multi_physics/piezo_elastodynamic.py -d "order=2, ct1=2.5"

View the resulting potential :math:`p` on a deformed mesh (2000x magnified)::

  sfepy-view output/piezo-ed/user_block.h5 -f p:wu:f2000:p0 1:vw:wu:f2000:p0 --color-map=inferno
"""
from functools import partial

import numpy as nm

from sfepy.base.base import output
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.homogenization.utils import define_box_regions

def post_process(out, problem, state, extend=False, pcs=None):
    """
    Calculate and output strain, stress and electric field vector for the given
    displacements and potential.
    """
    from sfepy.base.base import Struct

    ev = problem.evaluate
    strain = ev('ev_cauchy_strain.i.Omega(u)', mode='el_avg', verbose=False)
    stress = ev('ev_cauchy_stress.i.Omega(m.C, u)', mode='el_avg',
                copy_materials=False, verbose=False)
    E = ev('ev_grad.i.Omega(p)', mode='el_avg', verbose=False)

    out['cauchy_strain'] = Struct(name='output_data', mode='cell',
                                  data=strain)
    out['cauchy_stress'] = Struct(name='output_data', mode='cell',
                                  data=stress)
    out['E'] = Struct(name='output_data', mode='cell', data=E)

    top = problem.domain.regions['Top']
    p_top = state['p'].get_state_in_region(top)
    # = state['pc'](), but we want to test .get_state_in_region()
    pc_top = state['pc'].get_state_in_region(top)

    output('pc:', pc_top)
    output('|p - pc|_top:', nm.linalg.norm(p_top - pc_top))
    if pcs is not None:
        pcs.append(pc_top[0, 0])

    return out

def plot_voltage(problem, state, pcs=None):
    import os.path as op
    import matplotlib.pyplot as plt

    ts = problem.get_timestepper()

    fig, ax = plt.subplots()
    ax.plot(ts.times, pcs)
    ax.set_xlabel('$t$ [s]')
    ax.set_ylabel(r'$\bar p$ [V]')

    fig.tight_layout()
    fig.savefig(op.join(problem.output_dir, 'voltage.pdf'))

def define(
        dims=(1e-2, 1e-2, 5e-3),
        shape=(5, 11, 21),
        order=1,
        amplitude=0.0000001,
        ct1=1.5,
        dt=None,
        tss_name='tsn',
        tsc_name='tscedl',
        adaptive=False,
        ls_name='lsd',
        active_only=False,
        save_times='all',
        output_dir='output/piezo-ed',
):
    """
    Parameters
    ----------
    dims: physical dimensions of the block mesh
    shape: numbers of mesh vertices along each axis
    order: the FE approximation order
    amplitude: the seismic load amplitude
    ct1: final time in min(dims) / "longitudinal wave speed" units
    dt: time step (None means automatic)
    tss_name: time stepping solver name (see "solvers" section)
    tsc_name: time step controller name (see "solvers" section)
    adaptive: use adaptive time step control
    ls_name: linear system solver name (see "solvers" section)
    save_times: number of solutions to save
    output_dir: output directory
    """
    dim = len(dims)
    assert dim == 3

    # A PZT 5-H material, Voigt notation, strain - electric displacement form.
    epsT = nm.array([[1700., 0, 0],
                     [0, 1700., 0],
                     [0, 0, 1450.0]])
    dv = 1e-12 * nm.array([[0, 0, 0, 0, 741., 0],
                           [0, 0, 0, 741, 0, 0],
                           [-274., -274., 593., 0, 0, 0]]) # C / N = m / V

    # Convert to stress - electric displacement form.
    CEv = nm.array([[1.27e+011, 8.02e+010, 8.47e+010, 0, 0, 0],
                    [8.02e+010, 1.27e+011, 8.47e+010, 0, 0, 0],
                    [8.47e+010, 8.47e+010, 1.17e+011, 0, 0, 0],
                    [0, 0, 0, 2.34e+010, 0, 0],
                    [0, 0, 0, 0, 2.30e+010, 0],
                    [0, 0, 0, 0, 0, 2.35e+010]])
    ev = dv @ CEv
    epsS = epsT - dv @ ev.T

    # SfePy: 11 22 33 12 13 23
    # Voigt: 11 22 33 23 13 12
    ii = [0, 1, 2, 5, 4, 3]
    ix, iy = nm.meshgrid(ii, ii, sparse=True)
    CE = CEv[ix, iy]
    e = ev[:, ii]

    eps0 = 8.8541878128e-12
    kappa = epsS * eps0

    # Longitudinal and shear wave propagation speeds.
    mu = CE[-1, -1]
    lam = CE[0, 0] - 2 * mu
    rho = 7800
    cl = nm.sqrt((lam + 2.0 * mu) / rho)
    cs = nm.sqrt(mu / rho)

    # Element size.
    L = nm.min(dims)
    H = L / (nm.max(shape) - 1)

    # Time-stepping parameters.
    if dt is None:
        # For implicit schemes, dt based on the Courant number C0 = dt * cl / H
        # equal to 1.
        dt = H / cl # C0 = 1

    t1 = ct1 * L / cl

    # Time history record of pc.
    pcs = []
    _post_process = partial(post_process, pcs=pcs)
    _plot_voltage = partial(plot_voltage, pcs=pcs)

    def mesh_hook(mesh, mode):
        """
        Generate the block mesh.
        """
        if mode == 'read':
            mesh = gen_block_mesh(dims, shape, 0.5 * nm.array(dims),
                                  name='user_block', verbose=False)
            return mesh

        elif mode == 'write':
            pass

    filename_mesh = UserMeshIO(mesh_hook)

    bbox = [[0] * dim, dims]
    regions = define_box_regions(dim, bbox[0], bbox[1], 1e-5)
    regions.update({
        'Omega' : 'all',
    })

    materials = {
        'inclusion' : (None, 'get_inclusion_pars')
    }

    fields = {
        'displacement' : ('real', 'vector', 'Omega', order),
        'potential' : ('real', 'scalar', 'Omega', order),
        'constant' : ('real', 'scalar', 'Top', 0, 'L2', 'constant'),
    }

    variables = {
        'u' : ('unknown field', 'displacement', 0),
        'v' : ('test field', 'displacement', 'u'),
        'p' : ('unknown field', 'potential', 1, 1),
        'q' : ('test field', 'potential', 'p'),
        'pc' : ('unknown field', 'constant', 2, 1),
        'qc' : ('test field', 'constant', 'pc'),
    }

    materials = {
        'm' : ({
            'C': CE,
            'e' : e,
            'kappa' : kappa,
            'rho': rho,
            'penalty': 1,
            'iR' : 1.0 / (15e6 * dims[0] * dims[1]), # 1 / (R * top_area).
        },),
    }

    integrals = {
        'i' : 2 * order,
    }

    def get_ebcs(ts, coors, mode='u'):
        y = coors[:, 1]
        k = 2 * nm.pi / dims[1]
        shift = nm.pi / 3
        omega = cl * k
        time = ts.time
        if mode == 'u':
            val = (amplitude * nm.sin(time * omega) * nm.sin(k * y + shift))

        elif mode == 'du':
            val = (amplitude * omega * nm.cos(time * omega)
                   * nm.sin(k * y + shift))

        elif mode == 'ddu':
            val = (-amplitude * omega**2 * nm.sin(time * omega)
                   * nm.sin(k * y + shift))

        return val

    functions = {
        'get_u' : (lambda ts, coor, **kwargs: get_ebcs(ts, coor),),
        'get_du' : (lambda ts, coor, **kwargs: get_ebcs(ts, coor, mode='du'),),
        'get_ddu' : (lambda ts, coor, **kwargs: get_ebcs(ts, coor, mode='ddu'),),
    }

    ebcs = {
        'Seismic' : ('Bottom', {'u.2' : 'get_u', 'du.2' : 'get_du',
                                'ddu.2' : 'get_ddu'}),
        'Pot0' : ('Bottom', {'p.all' : 0.0}),
    }

    ics = {
        'ic' : ('Omega', {'u.all' : 0.0, 'du.all' : 0.0, 'p.0' : 0.0}),
    }

    equations = {
        '1' : """dw_dot.i.Omega(m.rho, v, ddu)
               + dw_lin_elastic.i.Omega(m.C, v, u)
               - dw_piezo_coupling.i.Omega(m.e, v, p)
               = 0""",
        '2' : """dw_piezo_coupling.i.Omega(m.e, u, q)
               + dw_diffusion.i.Omega(m.kappa, q, p)
               - de_surface_flux.i.Top(m.kappa, q, p)
               + de_surface_flux.i.Top(m.kappa, p, q)
               - de_surface_flux.i.Top(m.kappa, pc, q)
               + dw_dot.i.Top(m.penalty, q, p)
               - dw_dot.i.Top(m.penalty, q, pc)
               = 0""",
        '3' : """de_surface_flux.i.Top(m.kappa, qc, dp/dt)
               + 0.5 * dw_dot.i.Top(m.iR, qc, pc)
               + 0.5 * dw_dot.i.Top(m.iR, qc, pc[-1])
               = 0""",
    }

    solvers = {
        'lsd' : ('ls.auto_direct', {
            # Reuse the factorized linear system from the first time step.
            'use_presolve' : True,
            # Speed up the above by omitting the matrix digest check used
            # normally for verification that the current matrix corresponds to
            # the factorized matrix stored in the solver instance. Use with
            # care!
            'use_mtx_digest' : False,
            # Increase when getting MUMPS error -9.
            'memory_relaxation' : 20,
        }),
        'newton' : ('nls.newton', {
            'i_max'      : 1,
            'eps_a'      : 1e-6,
            'eps_r'      : 1e-6,
            'ls_on'      : 1e100,
        }),
        'tsn' : ('ts.newmark', {
            't0' : 0.0,
            't1' : t1,
            'dt' : dt,
            'n_step' : None,

            'is_linear' : True,
            # Without this the adaptive time-stepping cannot work.
            'has_time_derivatives' : adaptive,

            'beta' : 0.25,
            'gamma' : 0.5,

            'verbose' : 1,
        }),
        'tscedl' : ('tsc.ed_linear', {
            'eps_r' : (1e-4, 1e-2),
            'eps_a' : (1e-8, 1e-3),
            'fmin' : 0.3,
            'fmax' : 2.5,
            'fsafety' : 0.85,
            'red_factor' : 0.9,
            'inc_wait' : 10,
            'min_inc_factor' : 1.5,
        }),
    }

    options = {
        'ts' : tss_name,
        'tsc' : tsc_name if adaptive else None,
        'nls' : 'newton',
        'ls' : ls_name,

        'save_times' : save_times,

        'active_only' : active_only,
        'auto_transform_equations' : True,

        'output_format' : 'h5',
        'output_dir' : output_dir,
        'post_process_hook' : _post_process,
        'post_process_hook_final' : _plot_voltage,
    }

    return locals()