linear_elasticity/multi_point_constraints.py

Description

The linear elasticity of two discs connected using multi-point constraints.

Find \ul{u}, \ul{u_c} such that:

\int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})
+ \sum_{i,j \in \Omega_c} K_{kl}\ ((u_c)^{(j)}_l - (u_c)^{(i)}_l)
= 0
\;, \quad \forall \ul{v} \;,

where

D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) +
\lambda \ \delta_{ij} \delta_{kl} \;,

\lambda = E \nu / ((1 + \nu)(1 - 2\nu)), \\ \mu = E / 2(1 + \nu)
\;,

K_{kl} = K_{kl}(\ul{d}, \ul{k}) \;,

u_c^{(j)} are the DOFs - two displacements and one rotation in 2D - of the node j in \Omega_c, which is a subdomain composed of two 1D spring terms with the generalized stiffness matrix K_{kl} depending on the directions \ul{d} of the springs and the stiffness vector \ul{k}.

The deformation is governed by the Dirichlet conditions applied to one of the sping end points, see the dofs argument of define() below.

Usage Examples

  • Save and display boundary regions:

    sfepy-run sfepy/examples/linear_elasticity/multi_point_constraints.py --save-regions-as-groups --solve-not
    
    sfepy-view annulus-c_regions.vtk -2e -f Gamma1:p0 Gamma2:p1 Gamma3:p3 Gamma4:p4 --max-plots=4 --color-map=summer
    
  • Run:

    sfepy-run sfepy/examples/linear_elasticity/multi_point_constraints.py
    sfepy-run sfepy/examples/linear_elasticity/multi_point_constraints.py -d "dofs=(0,1)"
    sfepy-run sfepy/examples/linear_elasticity/multi_point_constraints.py -d "dofs=2"
    
  • Display results:

    sfepy-view annulus-c.vtk -2e
    sfepy-view annulus-c.vtk -2e -f u:wu:f1:p0 1:vw:p0 u:gu:p0
    
../_images/linear_elasticity-multi_point_constraints1.png

source code

r"""
The linear elasticity of two discs connected using multi-point constraints.

Find :math:`\ul{u}`, :math:`\ul{u_c}` such that:

.. math::
    \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})
    + \sum_{i,j \in \Omega_c} K_{kl}\ ((u_c)^{(j)}_l - (u_c)^{(i)}_l)
    = 0
    \;, \quad \forall \ul{v} \;,

where

.. math::
    D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) +
    \lambda \ \delta_{ij} \delta_{kl} \;,

    K_{kl} = K_{kl}(\ul{d}, \ul{k}) \;,

:math:`u_c^{(j)}` are the DOFs - two displacements and one rotation in 2D -
of the node :math:`j` in :math:`\Omega_c`, which is a subdomain composed of two
1D spring terms with the generalized stiffness matrix :math:`K_{kl}` depending
on the directions :math:`\ul{d}` of the springs and the stiffness vector
:math:`\ul{k}`.

The deformation is governed by the Dirichlet conditions applied to one of the
sping end points, see the `dofs` argument of :func:`define()` below.

Usage Examples
--------------

- Save and display boundary regions::

    sfepy-run sfepy/examples/linear_elasticity/multi_point_constraints.py --save-regions-as-groups --solve-not

    sfepy-view annulus-c_regions.vtk -2e -f Gamma1:p0 Gamma2:p1 Gamma3:p3 Gamma4:p4 --max-plots=4 --color-map=summer

- Run::

    sfepy-run sfepy/examples/linear_elasticity/multi_point_constraints.py
    sfepy-run sfepy/examples/linear_elasticity/multi_point_constraints.py -d "dofs=(0,1)"
    sfepy-run sfepy/examples/linear_elasticity/multi_point_constraints.py -d "dofs=2"

- Display results::

    sfepy-view annulus-c.vtk -2e
    sfepy-view annulus-c.vtk -2e -f u:wu:f1:p0 1:vw:p0 u:gu:p0
"""
import numpy as nm

from sfepy.mesh.mesh_generators import gen_cylinder_mesh
from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.discrete.fem.mesh import Mesh
from sfepy.linalg import get_coors_in_ball
from sfepy.mechanics.matcoefs import stiffness_from_lame

def define(dims=(1, 1, 2, 2, 0), shape=(5, 32, 0), order=1, dofs=(0, 1, 2),
           is_rot=True, output_dir='.'):
    if not isinstance(dofs, tuple):
        dofs = (dofs,)

    nuc = 2 + is_rot
    dofs0 = tuple(set(range(nuc)).difference(dofs))

    sdofs = ','.join([f'{ii}' for ii in dofs])
    sdofs0 = ','.join([f'{ii}' for ii in dofs0])

    def mesh_hook(mesh, mode):
        if mode == 'read':
            _mesh = gen_cylinder_mesh(dims, shape, (0, 0, 0),
                                     make_2d=True)
            _mesh2 = _mesh.copy()
            _mesh2.transform_coors(nm.eye(2, dtype=nm.float64) * 2.5)
            _mesh = _mesh + _mesh2

            # Add constraint vertices (and cells) to the base mesh.
            coors, vgroups, conns, mat_ids, descs = _mesh._get_io_data()
            nc = coors.shape[0]

            coors = nm.r_[coors, nm.zeros((4, 2), dtype=nm.float64)]
            vgroups = nm.r_[vgroups, [1, 2, 3, 4]]
            conns.append([[nc, nc + 1],
                          [nc + 2, nc + 3]])
            mat_ids.append([1, 2])
            descs.append('1_2')
            mesh = Mesh.from_data('annulus-c',
                                  coors, vgroups, conns, mat_ids, descs)
            return mesh

        elif mode == 'write':
            pass

    filename_mesh = UserMeshIO(mesh_hook)

    regions = {
        'Omega' : 'all',
        'Gamma1' : ('vertices by get_gamma1', 'facet'),
        'Gamma2' : ('vertices by get_gamma2', 'facet'),
        'Gamma3' : ('vertices by get_gamma3', 'facet'),
        'Gamma4' : ('vertices by get_gamma4', 'facet'),
        'Omega12C' : ('(vertices of group 1) +v (vertices of group 2)',
                      'cell', None, {'cell_tdim': 1}),
        'Gamma1C' : ('vertices of group 1', 'vertex'),
        'Gamma2C' : ('vertices of group 2', 'vertex'),
        'Omega34C' : ('(vertices of group 3) +v (vertices of group 4)',
                      'cell', None, {'cell_tdim': 1}),
        'Gamma3C' : ('vertices of group 3', 'vertex'),
        'Gamma4C' : ('vertices of group 4', 'vertex'),
        'OmegaC' : ('r.Omega12C +c r.Omega34C', 'cell', None, {'cell_tdim': 1})
    }

    centre = [0, 0]
    functions = {
        'get_gamma1' : (lambda coors, domain:
                        get_coors_in_ball(coors, centre, 1.1, 0.9),),
        'get_gamma2' : (lambda coors, domain:
                        get_coors_in_ball(coors, centre, 2.1, 1.9),),
        'get_gamma3' : (lambda coors, domain:
                        get_coors_in_ball(coors, centre, 2.6, 2.4),),
        'get_gamma4' : (lambda coors, domain:
                        get_coors_in_ball(coors, centre, 5.1, 4.9),),
    }

    fields = {
        'fu' : ('real', 2, 'Omega', order),
        'fc' : ('real', nuc, 'OmegaC', 1),
    }

    variables = {
        'u' : ('unknown field', 'fu', 0),
        'v' : ('test field',    'fu', 'u'),
        'uc' : ('unknown field', 'fc', 1),
        'vc' : ('test field',    'fc', 'uc'),
    }

    ebcs = {
        'uc' : ('Gamma1C', {f'uc.[{sdofs}]' : 0.1},),
    }
    if dofs0:
        ebcs.update({
            'uc0' : ('Gamma1C', {f'uc.[{sdofs0}]' : 0.0},),
        })
    if not is_rot:
        ebcs.update({
            'u0' : ('Gamma4', {'u.all' : 0.0}),
        })

    lcbcs = {
        'rigid' : (('Gamma1', 'Gamma2C'), {'u.all' : 'uc.all'},
                   None, 'rigid2'),
        'avg1' : (('Gamma2', 'Gamma3C'), {'u.all' : 'uc.all'},
                  None, 'average_force'),
        'avg2' : (('Gamma3', 'Gamma4C'), {'u.all' : 'uc.all'},
                  None, 'average_force'),
    }

    materials = {
        'm' : ({
            'D' : stiffness_from_lame(dim=2, lam=1e1, mu=1e0),
            'ks' : [[1e+5], [1e+5], [1e+5]][:nuc],
            'dvec' : [[0.01], [0.01]],
        },),
    }

    integrals = {
        'i' : 2 * order,
    }

    if is_rot:
        equations = {
            'eq1' :
            """dw_lin_elastic.i.Omega(m.D, v, u)
             + dw_lin_dspring_rot.0.Omega12C(m.dvec, m.ks, vc, uc)
             + dw_lin_dspring_rot.0.Omega34C(m.dvec, m.ks, vc, uc)
             = 0
            """,
        }

    else:
        equations = {
            'eq1' :
            """dw_lin_elastic.i.Omega(m.D, v, u)
             + dw_lin_dspring.0.Omega12C(m.dvec, m.ks, vc, uc)
             + dw_lin_dspring.0.Omega34C(m.dvec, m.ks, vc, uc)
             = 0
            """,
        }

    solvers = {
        'ls' : ('ls.auto_direct', {}),
        'newton' : ('nls.newton', {
            'i_max'      : 1,
            'eps_a'      : -1e-10,
            'check' : 0,
        }),
    }

    options = {
        'output_dir' : output_dir,
        'nls' : 'newton',
        'ls' : 'ls',
    }

    return locals()