diffusion/poisson.py¶
Description
Laplace equation using the long syntax of keywords.
See the tutorial section Example Problem Description File for a detailed explanation. See diffusion/poisson_short_syntax.py for the short syntax version.
Find such that:
r"""
Laplace equation using the long syntax of keywords.
See the tutorial section :ref:`poisson-example-tutorial` for a detailed
explanation. See :ref:`diffusion-poisson_short_syntax` for the short syntax
version.
Find :math:`t` such that:
.. math::
\int_{\Omega} c \nabla s \cdot \nabla t
= 0
\;, \quad \forall s \;.
"""
from __future__ import absolute_import
from sfepy import data_dir
filename_mesh = data_dir + '/meshes/3d/cylinder.mesh'
material_2 = {
'name' : 'coef',
'values' : {'val' : 1.0},
}
region_1000 = {
'name' : 'Omega',
'select' : 'cells of group 6',
}
region_03 = {
'name' : 'Gamma_Left',
'select' : 'vertices in (x < 0.00001)',
'kind' : 'facet',
}
region_4 = {
'name' : 'Gamma_Right',
'select' : 'vertices in (x > 0.099999)',
'kind' : 'facet',
}
field_1 = {
'name' : 'temperature',
'dtype' : 'real',
'shape' : (1,),
'region' : 'Omega',
'approx_order' : 1,
}
variable_1 = {
'name' : 't',
'kind' : 'unknown field',
'field' : 'temperature',
'order' : 0, # order in the global vector of unknowns
}
variable_2 = {
'name' : 's',
'kind' : 'test field',
'field' : 'temperature',
'dual' : 't',
}
ebc_1 = {
'name' : 't1',
'region' : 'Gamma_Left',
'dofs' : {'t.0' : 2.0},
}
ebc_2 = {
'name' : 't2',
'region' : 'Gamma_Right',
'dofs' : {'t.0' : -2.0},
}
integral_1 = {
'name' : 'i',
'order' : 2,
}
equations = {
'Temperature' : """dw_laplace.i.Omega( coef.val, s, t ) = 0"""
}
solver_0 = {
'name' : 'ls',
'kind' : 'ls.scipy_direct',
'method' : 'auto',
}
solver_1 = {
'name' : 'newton',
'kind' : 'nls.newton',
'i_max' : 1,
'eps_a' : 1e-10,
'eps_r' : 1.0,
'macheps' : 1e-16,
'lin_red' : 1e-2, # Linear system error < (eps_a * lin_red).
'ls_red' : 0.1,
'ls_red_warp' : 0.001,
'ls_on' : 1.1,
'ls_min' : 1e-5,
'check' : 0,
'delta' : 1e-6,
}
options = {
'nls' : 'newton',
'ls' : 'ls',
}