diffusion/darcy_flow_multicomp.py

Description

Each of the two equations describes a flow in one compartment of a porous medium. The equations are based on the Darcy flow and the i-th compartment is defined in \Omega_{i}.

\int_{\Omega_{i}} K^{i} \nabla p^{i} \cdot \nabla q^{i}+\int_{\Omega_{i}}
\sum_{j} \bar{G}\alpha_{k} \left( p^{i}-p^{j} \right)q^{i}
= \int_{\Omega_{i}} f^{i} q^{i},

\forall q^{i} \in Q^{i}, \quad i,j=1,2 \quad \mbox{and} \quad i\neq j,

where K^{i} is the local permeability of the i-th compartment, \bar{G}\alpha_{k} = G^{i}_{j} is the perfusion coefficient related to the compartments i and j, f^i are sources or sinks which represent the external flow into the i-th compartment and p^{i} is the pressure in the i-th compartment.

../_images/diffusion-darcy_flow_multicomp.png

source code

r"""
Each of the two equations describes a flow in one compartment of a porous
medium. The equations are based on the Darcy flow and the i-th compartment is
defined in :math:`\Omega_{i}`.

.. math::
    \int_{\Omega_{i}} K^{i} \nabla p^{i} \cdot \nabla q^{i}+\int_{\Omega_{i}}
    \sum_{j} \bar{G}\alpha_{k} \left( p^{i}-p^{j} \right)q^{i}
    = \int_{\Omega_{i}} f^{i} q^{i},
.. math::
    \forall q^{i} \in Q^{i}, \quad i,j=1,2 \quad \mbox{and} \quad i\neq j,

where :math:`K^{i}` is the local permeability of the i-th compartment,
:math:`\bar{G}\alpha_{k} = G^{i}_{j}` is the perfusion coefficient
related to the compartments :math:`i` and :math:`j`, :math:`f^i` are
sources or sinks which represent the external flow into the i-th
compartment and :math:`p^{i}` is the pressure in the i-th compartment.
"""

from __future__ import absolute_import
from sfepy.base.base import Struct
import numpy as nm
from sfepy import data_dir

filename_mesh = data_dir + '/meshes/3d/cube_medium_hexa.mesh'
G_bar = 2.0
alpha1 = 1.3
alpha2 = 1.0

materials = {
    'mat': ('mat_fun')
}

regions = {
    'Omega': 'cells of group 0',
    'Sigma_1': ('vertex 0', 'vertex'),
    'Omega1': ('copy r.Omega', 'cell', 'Omega'),
    'Omega2': ('copy r.Omega', 'cell', 'Omega'),
    'Source': 'cell 24',
    'Sink': 'cell 1',
}

fields = {
    'pressure':('real', 1, 'Omega', 1)
}

variables = {
    'p1': ('unknown field', 'pressure'),
    'q1': ('test field', 'pressure', 'p1'),
    'p2': ('unknown field', 'pressure'),
    'q2': ('test field', 'pressure', 'p2'),
}

ebcs = {
    'P1': ('Sigma_1', {'p1.0' : 0.0}),
}

equations = {
    'komp1': """dw_diffusion.5.Omega1(mat.K, q1, p1)
              + dw_dot.5.Omega1(mat.G_alfa, q1, p1)
              - dw_dot.5.Omega1(mat.G_alfa, q1, p2)
              = dw_integrate.5.Source(mat.f_1, q1)""",

    'komp2': """dw_diffusion.5.Omega2(mat.K, q2, p2)
              + dw_dot.5.Omega2(mat.G_alfa, q2, p2)
              - dw_dot.5.Omega2(mat.G_alfa, q2, p1)
              = dw_integrate.5.Sink(mat.f_2, q2)"""
}

solvers = {
    'ls': ('ls.scipy_direct', {}),
    'newton': ('nls.newton',
               {'i_max'      : 1,
                'eps_a'      : 1e-6,
                'eps_r'      : 1.0,
                })
}

def mat_fun(ts, coors, mode=None, **kwargs):
    if mode == 'qp':
        nqp, dim = coors.shape
        alpha = nm.zeros((nqp,1,1), dtype=nm.float64)
        alpha[0:nqp // 2,...] = alpha1
        alpha[nqp // 2:,...] = alpha2
        K = nm.eye(dim, dtype=nm.float64)
        K2 = nm.tile(K, (nqp,1,1))
        out = {
            'K' : K2,
            'f_1': 20.0 * nm.ones((nqp,1,1), dtype=nm.float64),
            'f_2': -20.0 * nm.ones((nqp,1,1), dtype=nm.float64),
            'G_alfa': G_bar * alpha,
            }

        return out

functions = {
    'mat_fun': (mat_fun,),
}

options = {
    'post_process_hook': 'postproc',
}

def postproc(out, pb, state, extend=False):
    alpha = pb.evaluate('ev_integrate_mat.5.Omega(mat.G_alfa, p1)',
                        mode='el_avg')
    out['alpha'] = Struct(name='output_data',
                          mode='cell',
                          data=alpha.reshape(alpha.shape[0], 1, 1, 1),
                          dofs=None)
    return out