diffusion/cube.py¶
Description
Laplace equation (e.g. temperature distribution) on a cube geometry with different boundary condition values on the cube sides. This example was used to create the SfePy logo.
Find such that:
r"""
Laplace equation (e.g. temperature distribution) on a cube geometry with
different boundary condition values on the cube sides. This example was
used to create the SfePy logo.
Find :math:`T` such that:
.. math::
\int_{\Omega} c \nabla s \cdot \nabla T
= 0
\;, \quad \forall s \;.
"""
from __future__ import absolute_import
from sfepy import data_dir
#filename_mesh = data_dir + '/meshes/3d/cube_big_tetra.mesh'
filename_mesh = data_dir + '/meshes/3d/cube_medium_hexa.mesh'
############# Laplace.
material_1 = {
'name' : 'coef',
'values' : {'val' : 1.0},
}
field_1 = {
'name' : 'temperature',
'dtype' : 'real',
'shape' : (1,),
'region' : 'Omega',
'approx_order' : 1,
}
if filename_mesh.find('cube_medium_hexa.mesh') >= 0:
region_1000 = {
'name' : 'Omega',
'select' : 'cells of group 0',
}
integral_1 = {
'name' : 'i',
'order' : 1,
}
solver_0 = {
'name' : 'ls',
'kind' : 'ls.scipy_direct',
}
elif filename_mesh.find('cube_big_tetra.mesh') >= 0:
region_1000 = {
'name' : 'Omega',
'select' : 'cells of group 6',
}
integral_1 = {
'name' : 'i',
'quadrature' : 'custom',
'vals' : [[1./3., 1./3., 1./3.]],
'weights' : [0.5]
}
solver_0 = {
'name' : 'ls',
'kind' : 'ls.scipy_iterative',
'method' : 'cg',
'i_max' : 1000,
'eps_r' : 1e-12,
}
variable_1 = {
'name' : 'T',
'kind' : 'unknown field',
'field' : 'temperature',
'order' : 0, # order in the global vector of unknowns
}
variable_2 = {
'name' : 's',
'kind' : 'test field',
'field' : 'temperature',
'dual' : 'T',
}
region_0 = {
'name' : 'Surface',
'select' : 'vertices of surface',
'kind' : 'facet',
}
region_1 = {
'name' : 'Bottom',
'select' : 'vertices in (z < -0.4999999)',
'kind' : 'facet',
}
region_2 = {
'name' : 'Top',
'select' : 'vertices in (z > 0.4999999)',
'kind' : 'facet',
}
region_03 = {
'name' : 'Left',
'select' : 'vertices in (x < -0.4999999)',
'kind' : 'facet',
}
ebc_1 = {
'name' : 'T0',
'region' : 'Surface',
'dofs' : {'T.0' : -3.0},
}
ebc_4 = {
'name' : 'T1',
'region' : 'Top',
'dofs' : {'T.0' : 1.0},
}
ebc_3 = {
'name' : 'T2',
'region' : 'Bottom',
'dofs' : {'T.0' : -1.0},
}
ebc_2 = {
'name' : 'T3',
'region' : 'Left',
'dofs' : {'T.0' : 2.0},
}
equations = {
'nice_equation' : """dw_laplace.i.Omega( coef.val, s, T ) = 0""",
}
solver_1 = {
'name' : 'newton',
'kind' : 'nls.newton',
'i_max' : 1,
'eps_a' : 1e-10,
'eps_r' : 1.0,
'macheps' : 1e-16,
'lin_red' : 1e-2, # Linear system error < (eps_a * lin_red).
'ls_red' : 0.1,
'ls_red_warp' : 0.001,
'ls_on' : 1.1,
'ls_min' : 1e-5,
'check' : 0,
'delta' : 1e-6,
}