SfePy NTC

Navigation

  • index
  • modules |
  • next |
  • previous |
  • home| 
  • news| 
  • documentation| 
  • examples| 
  • development| 
  • term overview| 
  • downloads
  • Examples »
  • Examples »
  • navier_stokes »

Previous topic

navier_stokes/stokes_slip_bc.py

Next topic

navier_stokes/utils.py

This Page

  • Show Source

Quick search

navier_stokes/stokes_slip_bc_penalty.pyΒΆ

Description

Incompressible Stokes flow with Navier (slip) boundary conditions, flow driven by a moving wall and a small diffusion for stabilization.

This example demonstrates a weak application of no-penetration boundary conditions using the penalty term dw_non_penetration_p.

Find \ul{u}, p such that:

\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
- \int_{\Omega} p\ \nabla \cdot \ul{v}
+ \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
+ \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
+ \int_{\Gamma_1 \cup \Gamma_2} \epsilon (\ul{n} \cdot \ul{v})
  (\ul{n} \cdot \ul{u})
= 0
\;, \quad \forall \ul{v} \;,

\int_{\Omega} \mu \nabla q \cdot \nabla p
+ \int_{\Omega} q\ \nabla \cdot \ul{u}
= 0
\;, \quad \forall q \;,

where \nu is the fluid viscosity, \beta is the slip coefficient, \mu is the (small) numerical diffusion coefficient, \epsilon is the penalty coefficient (sufficiently large), \Gamma_1 is the top wall that moves with the given driving velocity \ul{u}_d and \Gamma_2 are the remaining walls. The Navier conditions are in effect on both \Gamma_1, \Gamma_2 and are expressed by the corresponding integrals in the equations above.

The no-penetration boundary conditions are applied on \Gamma_1, \Gamma_2. Optionally, Dirichlet boundary conditions can be applied on the inlet, see the code below.

The mesh is created by gen_block_mesh() function - try different mesh dimensions and resolutions below. For large meshes use the 'ls_i' linear solver - PETSc + petsc4py is needed in that case.

See also navier_stokes/stokes_slip_bc.py.

../../_images/navier_stokes-stokes_slip_bc_penalty.png

source code

r"""
Incompressible Stokes flow with Navier (slip) boundary conditions, flow driven
by a moving wall and a small diffusion for stabilization.

This example demonstrates a weak application of `no-penetration` boundary
conditions using the penalty term ``dw_non_penetration_p``.

Find :math:`\ul{u}`, :math:`p` such that:

.. math::
    \int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}
    - \int_{\Omega} p\ \nabla \cdot \ul{v}
    + \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d)
    + \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u}
    + \int_{\Gamma_1 \cup \Gamma_2} \epsilon (\ul{n} \cdot \ul{v})
      (\ul{n} \cdot \ul{u})
    = 0
    \;, \quad \forall \ul{v} \;,

    \int_{\Omega} \mu \nabla q \cdot \nabla p
    + \int_{\Omega} q\ \nabla \cdot \ul{u}
    = 0
    \;, \quad \forall q \;,

where :math:`\nu` is the fluid viscosity, :math:`\beta` is the slip
coefficient, :math:`\mu` is the (small) numerical diffusion coefficient,
:math:`\epsilon` is the penalty coefficient (sufficiently large),
:math:`\Gamma_1` is the top wall that moves with the given driving velocity
:math:`\ul{u}_d` and :math:`\Gamma_2` are the remaining walls. The Navier
conditions are in effect on both :math:`\Gamma_1`, :math:`\Gamma_2` and are
expressed by the corresponding integrals in the equations above.

The `no-penetration` boundary conditions are applied on :math:`\Gamma_1`,
:math:`\Gamma_2`. Optionally, Dirichlet boundary conditions can be applied on
the inlet, see the code below.

The mesh is created by ``gen_block_mesh()`` function - try different mesh
dimensions and resolutions below. For large meshes use the ``'ls_i'`` linear
solver - PETSc + petsc4py is needed in that case.

See also :ref:`navier_stokes-stokes_slip_bc`.
"""
from __future__ import absolute_import
import numpy as nm

from sfepy.discrete.fem.meshio import UserMeshIO
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.homogenization.utils import define_box_regions

# Mesh dimensions.
dims = nm.array([3, 1, 0.5])

# Mesh resolution: increase to improve accuracy.
shape = [11, 15, 15]

def mesh_hook(mesh, mode):
    """
    Generate the block mesh.
    """
    if mode == 'read':
        mesh = gen_block_mesh(dims, shape, [0, 0, 0], name='user_block',
                              verbose=False)
        return mesh

    elif mode == 'write':
        pass

filename_mesh = UserMeshIO(mesh_hook)

regions = define_box_regions(3, 0.5 * dims)
regions.update({
    'Omega' : 'all',
    'Gamma1_f' : ('copy r.Top', 'face'),
    'Gamma2_f' : ('r.Near +v r.Bottom +v r.Far', 'face'),
    'Gamma_f' : ('r.Gamma1_f +v r.Gamma2_f', 'face'),
    'Inlet_f' : ('r.Left -v r.Gamma_f', 'face'),
})

fields = {
    'velocity' : ('real', 3, 'Omega', 1),
    'pressure' : ('real', 1, 'Omega', 1),
}

def get_u_d(ts, coors, region=None):
    """
    Given stator velocity.
    """
    out = nm.zeros_like(coors)
    out[:] = [1.0, 1.0, 0.0]

    return out

functions = {
    'get_u_d' : (get_u_d,),
}

variables = {
    'u' : ('unknown field', 'velocity', 0),
    'v' : ('test field',    'velocity', 'u'),
    'u_d' : ('parameter field', 'velocity',
             {'setter' : 'get_u_d'}),
    'p' : ('unknown field', 'pressure', 1),
    'q' : ('test field',    'pressure', 'p'),
}

# Try setting the inlet velocity by un-commenting the 'inlet' ebcs.
ebcs = {
    ## 'inlet' : ('Inlet_f', {'u.0' : 1.0, 'u.[1, 2]' : 0.0}),
}

materials = {
    'm' : ({
        'nu' : 1e-3,
        'beta' : 1e-2,
        'mu' : 1e-10,
        'np_eps' : 1e3,
    },),
}

equations = {
    'balance' :
    """dw_div_grad.5.Omega(m.nu, v, u)
     - dw_stokes.5.Omega(v, p)
     + dw_surface_dot.5.Gamma1_f(m.beta, v, u)
     + dw_surface_dot.5.Gamma2_f(m.beta, v, u)
     + dw_non_penetration_p.5.Gamma1_f(m.np_eps, v, u)
     + dw_non_penetration_p.5.Gamma2_f(m.np_eps, v, u)
     =
     + dw_surface_dot.5.Gamma1_f(m.beta, v, u_d)""",
    'incompressibility' :
    """dw_laplace.5.Omega(m.mu, q, p)
     + dw_stokes.5.Omega(u, q) = 0""",
}

solvers = {
    'ls_d' : ('ls.scipy_direct', {}),
    'ls_i' : ('ls.petsc', {
        'method' : 'bcgsl', # ksp_type
        'precond' : 'bjacobi', # pc_type
        'sub_precond' : 'ilu', # sub_pc_type
        'eps_a' : 0.0, # abstol
        'eps_r' : 1e-12, # rtol
        'eps_d' : 1e10, # Divergence tolerance.
        'i_max' : 1000, # maxits
    }),
    'newton' : ('nls.newton', {
        'i_max' : 1,
        'eps_a'      : 1e-10,
    }),
}

options = {
    'nls' : 'newton',
    'ls' : 'ls_d',
}

Navigation

  • index
  • modules |
  • next |
  • previous |
  • home| 
  • news| 
  • documentation| 
  • examples| 
  • development| 
  • term overview| 
  • downloads
  • Examples »
  • Examples »
  • navier_stokes »
© Copyright 2017, Robert Cimrman and SfePy developers. Created using Sphinx 2.2.0.