sfepy.terms.terms_contact module

class sfepy.terms.terms_contact.ContactInfo(region, integral, geo, state)[source]

Various contact-related data of contact terms.

update(xx)[source]
class sfepy.terms.terms_contact.ContactTerm(*args, **kwargs)[source]

Contact term with a penalty function.

The penalty function is defined as \varepsilon_N \langle g_N(\ul{u})
\rangle, where \varepsilon_N is the normal penalty parameter and \langle g_N(\ul{u}) \rangle are the Macaulay’s brackets of the gap function g_N(\ul{u}).

This term has a dynamic connectivity of DOFs in its region.

Definition:

\int_{\Gamma_{c}} \varepsilon_N \langle g_N(\ul{u}) \rangle \ul{n}
\ul{v}

Call signature:
dw_contact (material, virtual, state)
Arguments:
  • material : \varepsilon_N
  • virtual : \ul{v}
  • state : \ul{u}
arg_shapes = {‘state’: ‘D’, ‘material’: ‘.: 1’, ‘virtual’: (‘D’, ‘state’)}
arg_types = (‘material’, ‘virtual’, ‘state’)
call_function(out, fargs)[source]
eval_real(shape, fargs, mode=’eval’, term_mode=None, diff_var=None, **kwargs)[source]
static function(out, fun, *args)[source]
static function_weak(out, out_cc)[source]
get_contact_info(geo, state, init_gps=False)[source]
get_eval_shape(epss, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]
get_fargs(epss, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]
static integrate(out, val_qp, geo, fmode)[source]
integration = ‘surface’
name = ‘dw_contact’