sfepy.terms.terms_constraints module

class sfepy.terms.terms_constraints.NonPenetrationPenaltyTerm(name, arg_str, integral, region, **kwargs)[source]

Non-penetration condition in the weak sense using a penalty.

Definition

\int_{\Gamma} c (\ul{n} \cdot \ul{v}) (\ul{n} \cdot \ul{u})

Call signature

dw_non_penetration_p

(material, virtual, state)

Arguments
  • material : c

  • virtual : \ul{v}

  • state : \ul{u}

arg_shapes = {'material': '1, 1', 'state': 'D', 'virtual': ('D', 'state')}
arg_types = ('material', 'virtual', 'state')
static function(out, val_qp, ebf, mat, sg, diff_var)[source]
get_fargs(self, mat, vvar, svar, mode=None, term_mode=None, diff_var=None, **kwargs)[source]
integration = 'surface'
name = 'dw_non_penetration_p'
class sfepy.terms.terms_constraints.NonPenetrationTerm(name, arg_str, integral, region, **kwargs)[source]

Non-penetration condition in the weak sense.

Definition

\int_{\Gamma} c \lambda \ul{n} \cdot \ul{v} \mbox{ , }
\int_{\Gamma} c \hat\lambda \ul{n} \cdot \ul{u} \\
\int_{\Gamma} \lambda \ul{n} \cdot \ul{v} \mbox{ , }
\int_{\Gamma} \hat\lambda \ul{n} \cdot \ul{u}

Call signature

dw_non_penetration

(opt_material, virtual, state)

(opt_material, state, virtual)

Arguments 1
  • material : c (optional)

  • virtual : \ul{v}

  • state : \lambda

Arguments 2
  • material : c (optional)

  • state : \ul{u}

  • virtual : \hat\lambda

arg_shapes = [{'opt_material': '1, 1', 'virtual/grad': ('D', None), 'state/grad': 1, 'virtual/div': (1, None), 'state/div': 'D'}, {'opt_material': None}]
arg_types = (('opt_material', 'virtual', 'state'), ('opt_material', 'state', 'virtual'))
static function(out, val_qp, ebf, bf, mat, sg, diff_var, mode)[source]

ebf belongs to vector variable, bf to scalar variable.

get_fargs(self, mat, vvar, svar, mode=None, term_mode=None, diff_var=None, **kwargs)[source]
integration = 'surface'
modes = ('grad', 'div')
name = 'dw_non_penetration'