linear_elasticity/linear_elastic_probes.py

Description

This example shows how to use the post_process_hook to probe the output data.

Find \ul{u} such that:

\int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})
= 0
\;, \quad \forall \ul{v} \;,

where

D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) +
\lambda \ \delta_{ij} \delta_{kl}
\;.

../_images/linear_elasticity-linear_elastic_probes-cylinder_probe_line1.png ../_images/linear_elasticity-linear_elastic_probes-cylinder_probe_circle.png ../_images/linear_elasticity-linear_elastic_probes-cylinder_probe_ray.png ../_images/linear_elasticity-linear_elastic_probes.png

source code

r"""
This example shows how to use the post_process_hook to probe the output data.

Find :math:`\ul{u}` such that:

.. math::
    \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})
    = 0
    \;, \quad \forall \ul{v} \;,

where

.. math::
    D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) +
    \lambda \ \delta_{ij} \delta_{kl}
    \;.
"""
from __future__ import absolute_import
from sfepy.examples.linear_elasticity.linear_elastic import *
import os
import numpy as nm

from sfepy.base.base import Struct
try:
    from sfepy.postprocess.probes_vtk import Probe

except ImportError:
    Probe = None

from six.moves import range

# Define options.
options = {
    'output_dir' : '.',
    'post_process_hook' : 'post_process',
}

# The function returning the probe parametrization.
def par_fun(idx):
    return nm.log(idx + 1) / nm.log(20) * 0.04

# Define the function post_process, that will be called after the problem is
# solved.
def post_process(out, problem, variables, extend=False):
    """
    This will be called after the problem is solved.

    Parameters
    ----------
    out : dict
        The output dictionary, where this function will store additional data.
    problem : Problem instance
        The current Problem instance.
    variables : Variables instance
        The computed state, containing FE coefficients of all the unknown
        variables.
    extend : bool
        The flag indicating whether to extend the output data to the whole
        domain. It can be ignored if the problem is solved on the whole domain
        already.

    Returns
    -------
    out : dict
        The updated output dictionary.
    """
    import matplotlib.pyplot as plt
    import matplotlib.font_manager as fm

    # Cauchy strain averaged in elements.
    strain = problem.evaluate('ev_cauchy_strain.i.Omega( u )',
                              mode='el_avg')
    out['cauchy_strain'] = Struct(name='output_data',
                                  mode='cell', data=strain,
                                  dofs=None)
    # Cauchy stress averaged in elements.
    stress = problem.evaluate('ev_cauchy_stress.i.Omega( solid.D, u )',
                              mode='el_avg')
    out['cauchy_stress'] = Struct(name='output_data',
                                  mode='cell', data=stress,
                                  dofs=None)

    if Probe is None:
        # Do not probe if vtk cannot be imported.
        return out

    # Define three line probes in axial directions.
    mesh = problem.domain.mesh

    bbox = mesh.get_bounding_box()
    cx, cy, cz = 0.5 * bbox.sum(axis=0)

    labels = []
    probe_names = []

    probe = Probe(out, mesh)

    # line probe
    labels.append('line probe - x direction')
    probe_names.append('line')
    probe.add_line_probe('line',
                         [bbox[0,0], cy, cz],
                         [bbox[1,0], cy, cz],
                         30)

    # circle probe
    labels.append('circle probe')
    probe_names.append('circle')
    probe.add_circle_probe('circle',
                           [cx, cy, cz],
                           [0, 0, 1],
                           0.015,
                           30)

    # ray probe
    labels.append('ray probe - y direction')
    probe_names.append('ray')
    probe.add_ray_probe('ray',
                        [cx, bbox[0,1], cz],
                        [0, 1, 0],
                        par_fun, 20)

    # Gnerate matplotlib figures with the probe plot.
    for probe_name, label in zip(probe_names, labels):

        fig = plt.figure()
        plt.clf()
        fig.subplots_adjust(hspace=0.4)

        plt.subplot(311)
        pars, vals = probe(probe_name, 'u')
        for ic in range(vals.shape[1]):
            plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1),
                     lw=1, ls='-', marker='+', ms=3)
        plt.ylabel('displacements')
        plt.xlabel('probe %s' % label, fontsize=8)
        plt.legend(loc='best', prop=fm.FontProperties(size=10))

        sym_labels = ['11', '22', '33', '12', '13', '23']

        plt.subplot(312)
        pars, vals = probe(probe_name, 'cauchy_strain')
        for ii, lab in enumerate(sym_labels):
            plt.plot(pars, vals[:,ii], label=r'$e_{%s}$' % lab,
                     lw=1, ls='-', marker='+', ms=3)
        plt.ylabel('Cauchy strain')
        plt.xlabel('probe %s' % label, fontsize=8)
        plt.legend(loc='best', prop=fm.FontProperties(size=8))

        plt.subplot(313)
        pars, vals = probe(probe_name, 'cauchy_stress')
        for ii, lab in enumerate(sym_labels):
            plt.plot(pars, vals[:,ii], label=r'$\tau_{%s}$' % lab,
                     lw=1, ls='-', marker='+', ms=3)
        plt.ylabel('Cauchy stress')
        plt.xlabel('probe %s' % label, fontsize=8)
        plt.legend(loc='best', prop=fm.FontProperties(size=8))

        opts = problem.conf.options
        filename_results = os.path.join(opts.get('output_dir'),
                                        'cylinder_probe_%s.png' % probe_name)

        fig.savefig(filename_results)

    return out