diffusion/time_poisson_interactive.py

Description

Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use.

The script allows setting various simulation parameters, namely:

  • the diffusivity coefficient

  • the max. initial condition value

  • temperature field approximation order

  • uniform mesh refinement

The example shows also how to probe the results.

In the SfePy top-level directory the following command can be used to get usage information:

python sfepy/examples/diffusion/time_poisson_interactive.py -h
../_images/diffusion-time_poisson_interactive-time_poisson_interactive_probe_04.png ../_images/diffusion-time_poisson_interactive.png

source code

#!/usr/bin/env python
"""
Transient Laplace equation (heat equation) with non-constant initial conditions
given by a function, using commands for interactive use.

The script allows setting various simulation parameters, namely:

- the diffusivity coefficient
- the max. initial condition value
- temperature field approximation order
- uniform mesh refinement

The example shows also how to probe the results.

In the SfePy top-level directory the following command can be used to get usage
information::

  python sfepy/examples/diffusion/time_poisson_interactive.py -h
"""
from __future__ import absolute_import
import sys
from six.moves import range
sys.path.append('.')
from argparse import ArgumentParser, RawDescriptionHelpFormatter

import numpy as nm
import matplotlib.pyplot as plt

from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct
from sfepy.discrete import (FieldVariable, Material, Integral, Function,
                            Equation, Equations, Problem)
from sfepy.discrete.problem import prepare_matrix
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver
from sfepy.discrete.probes import LineProbe, CircleProbe
from sfepy.discrete.projections import project_by_component

def gen_probes(problem):
    """
    Define a line probe and a circle probe.
    """
    # Use enough points for higher order approximations.
    n_point = 1000

    p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0])
    line = LineProbe(p0, p1, n_point, share_geometry=True)
    # Workaround current probe code shortcoming.
    line.set_options(close_limit=0.5)

    centre = 0.5 * (p0 + p1)
    normal = [0.0, 1.0, 0.0]
    r = 0.019
    circle = CircleProbe(centre, normal, r, n_point, share_geometry=True)
    circle.set_options(close_limit=0.0)

    probes = [line, circle]
    labels = ['%s -> %s' % (p0, p1),
              'circle(%s, %s, %s' % (centre, normal, r)]

    return probes, labels

def probe_results(ax_num, T, dvel, probe, label):
    """
    Probe the results using the given probe and plot the probed values.
    """
    results = {}

    pars, vals = probe(T)
    results['T'] = (pars, vals)

    pars, vals = probe(dvel)
    results['dvel'] = (pars, vals)

    fig = plt.figure(1)

    ax = plt.subplot(2, 2, 2 * ax_num + 1)
    ax.cla()
    pars, vals = results['T']

    ax.plot(pars, vals[:, 0], label=r'$T$', lw=1, ls='-', marker='+', ms=3)
    dx = 0.05 * (pars[-1] - pars[0])
    ax.set_xlim(pars[0] - dx, pars[-1] + dx)
    ax.set_ylabel('temperature')
    ax.set_xlabel('probe %s' % label, fontsize=8)
    ax.legend(loc='best', fontsize=10)

    ax = plt.subplot(2, 2, 2 * ax_num + 2)
    ax.cla()
    pars, vals = results['dvel']
    for ic in range(vals.shape[1]):
        ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1),
                lw=1, ls='-', marker='+', ms=3)
    dx = 0.05 * (pars[-1] - pars[0])
    ax.set_xlim(pars[0] - dx, pars[-1] + dx)
    ax.set_ylabel('diffusion velocity')
    ax.set_xlabel('probe %s' % label, fontsize=8)
    ax.legend(loc='best', fontsize=10)

    return fig, results

helps = {
    'diffusivity' : 'the diffusivity coefficient [default: %(default)s]',
    'ic_max' : 'the max. initial condition value [default: %(default)s]',
    'order' : 'temperature field approximation order [default: %(default)s]',
    'refine' : 'uniform mesh refinement level [default: %(default)s]',
    'probe' : 'probe the results',
    'show' : 'show the probing results figure, if --probe is used',
}

def main():
    from sfepy import data_dir

    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('--diffusivity', metavar='float', type=float,
                        action='store', dest='diffusivity',
                        default=1e-5, help=helps['diffusivity'])
    parser.add_argument('--ic-max', metavar='float', type=float,
                        action='store', dest='ic_max',
                        default=2.0, help=helps['ic_max'])
    parser.add_argument('--order', metavar='int', type=int,
                        action='store', dest='order',
                        default=2, help=helps['order'])
    parser.add_argument('-r', '--refine', metavar='int', type=int,
                        action='store', dest='refine',
                        default=0, help=helps['refine'])
    parser.add_argument('-p', '--probe',
                        action="store_true", dest='probe',
                        default=False, help=helps['probe'])
    parser.add_argument('-s', '--show',
                        action="store_true", dest='show',
                        default=False, help=helps['show'])
    options = parser.parse_args()

    assert_((0 < options.order),
            'temperature approximation order must be at least 1!')

    output('using values:')
    output('  diffusivity:', options.diffusivity)
    output('  max. IC value:', options.ic_max)
    output('uniform mesh refinement level:', options.refine)

    mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
    domain = FEDomain('domain', mesh)

    if options.refine > 0:
        for ii in range(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements'
                   % (domain.shape.n_nod, domain.shape.n_el))

    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Left',
                                'vertices in x < 0.00001', 'facet')
    right = domain.create_region('Right',
                                 'vertices in x > 0.099999', 'facet')

    field = Field.from_args('fu', nm.float64, 'scalar', omega,
                            approx_order=options.order)

    T = FieldVariable('T', 'unknown', field, history=1)
    s = FieldVariable('s', 'test', field, primary_var_name='T')

    m = Material('m', diffusivity=options.diffusivity * nm.eye(3))

    integral = Integral('i', order=2*options.order)

    t1 = Term.new('dw_diffusion(m.diffusivity, s, T)',
                  integral, omega, m=m, s=s, T=T)
    t2 = Term.new('dw_dot(s, dT/dt)',
                  integral, omega, s=s, T=T)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    # Boundary conditions.
    ebc1 = EssentialBC('T1', left, {'T.0' : 2.0})
    ebc2 = EssentialBC('T2', right, {'T.0' : -2.0})

    # Initial conditions.
    def get_ic(coors, ic):
        x, y, z = coors.T
        return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1)
    ic_fun = Function('ic_fun', get_ic)
    ic = InitialCondition('ic', omega, {'T.0' : ic_fun})

    pb = Problem('heat', equations=eqs)
    pb.set_bcs(ebcs=Conditions([ebc1, ebc2]))
    pb.set_ics(Conditions([ic]))

    variables = pb.get_initial_state()
    init_fun, prestep_fun, _poststep_fun = pb.get_tss_functions()

    ls = ScipyDirect({})
    nls_status = IndexedStruct()
    nls = Newton({'is_linear' : True}, lin_solver=ls, status=nls_status)
    tss = SimpleTimeSteppingSolver({'t0' : 0.0, 't1' : 100.0, 'n_step' : 11},
                                   nls=nls, context=pb, verbose=True)
    pb.set_solver(tss)

    if options.probe:
        # Prepare probe data.
        probes, labels = gen_probes(pb)

        ev = pb.evaluate
        order = 2 * (options.order - 1)

        gfield = Field.from_args('gu', nm.float64, 'vector', omega,
                                approx_order=options.order - 1)
        dvel = FieldVariable('dvel', 'parameter', gfield,
                             primary_var_name='(set-to-None)')
        cfield = Field.from_args('gu', nm.float64, 'scalar', omega,
                                approx_order=options.order - 1)
        component = FieldVariable('component', 'parameter', cfield,
                                  primary_var_name='(set-to-None)')

        nls_options = {'eps_a' : 1e-16, 'i_max' : 1}

        suffix = tss.ts.suffix
        def poststep_fun(ts, vec):
            vec = _poststep_fun(ts, vec)

            # Probe the solution.
            dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)'
                         % order, copy_materials=False, mode='qp')
            project_by_component(dvel, dvel_qp, component, order,
                                 nls_options=nls_options)

            all_results = []
            for ii, probe in enumerate(probes):
                fig, results = probe_results(ii, T, dvel, probe, labels[ii])

                all_results.append(results)

            plt.tight_layout()
            fig.savefig('time_poisson_interactive_probe_%s.png'
                        % (suffix % ts.step), bbox_inches='tight')

            for ii, results in enumerate(all_results):
                output('probe %d (%s):' % (ii, probes[ii].name))
                output.level += 2
                for key, res in ordered_iteritems(results):
                    output(key + ':')
                    val = res[1]
                    output('  min: %+.2e, mean: %+.2e, max: %+.2e'
                           % (val.min(), val.mean(), val.max()))
                output.level -= 2

            return vec

    else:
        poststep_fun = _poststep_fun

    pb.time_update(tss.ts)
    variables.apply_ebc()

    # This is required if {'is_linear' : True} is passed to Newton.
    mtx = prepare_matrix(pb, variables)
    pb.try_presolve(mtx)

    tss_status = IndexedStruct()
    tss(variables.get_state(pb.active_only, force=True),
        init_fun=init_fun, prestep_fun=prestep_fun, poststep_fun=poststep_fun,
        status=tss_status)

    output(tss_status)

    if options.show:
        plt.show()

if __name__ == '__main__':
    main()