sfepy.terms.terms_adj_navier_stokes module¶
- class sfepy.terms.terms_adj_navier_stokes.AdjConvect1Term(name, arg_str, integral, region, **kwargs)[source]¶
The first adjoint term to nonlinear convective term dw_convect.
- Definition:

- Call signature:
dw_adj_convect1
(virtual, state, parameter)- Arguments:
virtual :

state :

parameter :

- arg_shapes = {'parameter': 'D', 'state': 'D', 'virtual': ('D', 'state')}¶
- arg_types = ('virtual', 'state', 'parameter')¶
- static function(out, state_w, grad_u, cmap, is_diff)¶
- name = 'dw_adj_convect1'¶
- class sfepy.terms.terms_adj_navier_stokes.AdjConvect2Term(name, arg_str, integral, region, **kwargs)[source]¶
The second adjoint term to nonlinear convective term dw_convect.
- Definition:

- Call signature:
dw_adj_convect2
(virtual, state, parameter)- Arguments:
virtual :

state :

parameter :

- arg_shapes = {'parameter': 'D', 'state': 'D', 'virtual': ('D', 'state')}¶
- arg_types = ('virtual', 'state', 'parameter')¶
- static function(out, state_w, state_u, cmap, is_diff)¶
- name = 'dw_adj_convect2'¶
- class sfepy.terms.terms_adj_navier_stokes.AdjDivGradTerm(name, arg_str, integral, region, **kwargs)[source]¶
Gateaux differential of
w.r.t.
in the direction
or adjoint term to dw_div_grad.- Definition:

- Call signature:
dw_adj_div_grad
(material_1, material_2, virtual, parameter)- Arguments:
material_1 :
(weight)material_2 :
(viscosity)virtual :

state :

- arg_shapes = {'material_1': '1, 1', 'material_2': '1, 1', 'parameter': 'D', 'virtual': ('D', None)}¶
- arg_types = ('material_1', 'material_2', 'virtual', 'parameter')¶
- static function(out, grad, viscosity, cmap_v, cmap_s, is_diff)¶
- name = 'dw_adj_div_grad'¶
- class sfepy.terms.terms_adj_navier_stokes.NSOFMinGradTerm(name, arg_str, integral, region, **kwargs)[source]¶
- Call signature:
d_of_ns_min_grad
(material_1, material_2, parameter)- arg_shapes = {'material_1': '1, 1', 'material_2': '1, 1', 'parameter': 1}¶
- arg_types = ('material_1', 'material_2', 'parameter')¶
- static function(out, grad, viscosity, cmap)¶
- name = 'd_of_ns_min_grad'¶
- class sfepy.terms.terms_adj_navier_stokes.NSOFSurfMinDPressDiffTerm(name, arg_str, integral, region, **kwargs)[source]¶
Gateaux differential of
w.r.t.
in the
direction
.- Definition:

- Call signature:
dw_of_ns_surf_min_d_press_diff
(material, virtual)- Arguments:
material :
(weight)virtual :

- arg_shapes = {'material': 1, 'virtual': (1, None)}¶
- arg_types = ('material', 'virtual')¶
- name = 'dw_of_ns_surf_min_d_press_diff'¶
- class sfepy.terms.terms_adj_navier_stokes.NSOFSurfMinDPressTerm(name, arg_str, integral, region, **kwargs)[source]¶
Sensitivity of
.- Definition:

- Call signature:
ev_of_ns_surf_min_d_press
(material_1, material_2, parameter)- Arguments:
material_1 :
(weight)material_2 :
(given pressure)parameter :

- arg_shapes = {'material_1': 1, 'material_2': 1, 'parameter': 1}¶
- arg_types = ('material_1', 'material_2', 'parameter')¶
- static function(out, pressure, weight, bpress, cmap, is_diff)¶
- get_eval_shape(weight, bpress, parameter, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- integration = 'facet'¶
- name = 'ev_of_ns_surf_min_d_press'¶
- class sfepy.terms.terms_adj_navier_stokes.SDConvectTerm(name, arg_str, integral, region, **kwargs)[source]¶
Sensitivity (shape derivative) of convective term dw_convect.
Supports the following term modes: 1 (sensitivity) or 0 (original term value).
- Definition:
![\int_{\Omega} [ u_k \pdiff{u_i}{x_k} w_i (\nabla \cdot \Vcal)
- u_k \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} w_i ]](../../../_images/math/a5897daf1d725cdc2ee9f69ff9a8288e19da8363.png)
- Call signature:
ev_sd_convect
(parameter_u, parameter_w, parameter_mv)- Arguments:
parameter_u :

parameter_w :

parameter_mv :

- arg_shapes = {'parameter_mv': 'D', 'parameter_u': 'D', 'parameter_w': 'D'}¶
- arg_types = ('parameter_u', 'parameter_w', 'parameter_mv')¶
- static function(out, state_u, grad_u, state_w, div_mv, grad_mv, cmap_u, mode)¶
- name = 'ev_sd_convect'¶
- class sfepy.terms.terms_adj_navier_stokes.SDDivGradTerm(name, arg_str, integral, region, **kwargs)[source]¶
Sensitivity (shape derivative) of diffusion term dw_div_grad.
Supports the following term modes: 1 (sensitivity) or 0 (original term value).
- Definition:


- Call signature:
ev_sd_div_grad
(opt_material, parameter_u, parameter_w, parameter_mv)- Arguments:
material :
(viscosity, optional)parameter_u :

parameter_w :

parameter_mv :

- arg_shapes = [{'opt_material': '1, 1', 'parameter_mv': 'D', 'parameter_u': 'D', 'parameter_w': 'D'}, {'opt_material': None}]¶
- arg_types = ('opt_material', 'parameter_u', 'parameter_w', 'parameter_mv')¶
- static function(out, grad_u, grad_w, div_mv, grad_mv, viscosity, cmap_u, mode)¶
- get_eval_shape(mat, par_u, par_w, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- name = 'ev_sd_div_grad'¶
- class sfepy.terms.terms_adj_navier_stokes.SDDivTerm(name, arg_str, integral, region, **kwargs)[source]¶
Sensitivity (shape derivative) of Stokes term dw_stokes in ‘div’ mode.
Supports the following term modes: 1 (sensitivity) or 0 (original term value).
- Definition:
![\int_{\Omega} p [ (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal})
- \pdiff{\Vcal_k}{x_i} \pdiff{w_i}{x_k} ]](../../../_images/math/0abeedc3cf5d573dcdbcf772041b53da76ef20a3.png)
- Call signature:
ev_sd_div
(parameter_u, parameter_p, parameter_mv)- Arguments:
parameter_u :

parameter_p :

parameter_mv :

- arg_shapes = {'parameter_mv': 'D', 'parameter_p': 1, 'parameter_u': 'D'}¶
- arg_types = ('parameter_u', 'parameter_p', 'parameter_mv')¶
- static function(out, div_u, grad_u, state_p, div_mv, grad_mv, cmap_u, mode)¶
- name = 'ev_sd_div'¶
- class sfepy.terms.terms_adj_navier_stokes.SDDotTerm(name, arg_str, integral, region, **kwargs)[source]¶
Sensitivity (shape derivative) of dot product of scalars or vectors.
- Definition:

- Call signature:
ev_sd_dot
(parameter_1, parameter_2, parameter_mv)- Arguments:
parameter_1 :
or 
parameter_2 :
or 
parameter_mv :

- arg_shapes = [{'parameter_1': 'D', 'parameter_2': 'D', 'parameter_mv': 'D'}, {'parameter_1': 1, 'parameter_2': 1}]¶
- arg_types = ('parameter_1', 'parameter_2', 'parameter_mv')¶
- static function(out, state_p, state_q, div_mv, cmap, mode)¶
- name = 'ev_sd_dot'¶
- class sfepy.terms.terms_adj_navier_stokes.SDGradDivStabilizationTerm(name, arg_str, integral, region, **kwargs)[source]¶
Sensitivity (shape derivative) of stabilization term dw_st_grad_div.
- Definition:
![\gamma \int_{\Omega} [ (\nabla \cdot \ul{u}) (\nabla \cdot \ul{w})
(\nabla \cdot \ul{\Vcal})
- \pdiff{u_i}{x_k} \pdiff{\Vcal_k}{x_i} (\nabla \cdot \ul{w})
- (\nabla \cdot \ul{u}) \pdiff{w_i}{x_k} \pdiff{\Vcal_k}{x_i} ]](../../../_images/math/c8fc0fdeb347a8df1f4a856f9f56bd62af7d624c.png)
- Call signature:
ev_sd_st_grad_div
(material, parameter_u, parameter_w, parameter_mv)- Arguments:
material :

parameter_u :

parameter_w :

parameter_mv :

mode : 1 (sensitivity) or 0 (original term value)
- arg_shapes = {'material': '1, 1', 'parameter_mv': 'D', 'parameter_u': 'D', 'parameter_w': 'D'}¶
- arg_types = ('material', 'parameter_u', 'parameter_w', 'parameter_mv')¶
- static function(out, div_u, grad_u, div_w, grad_w, div_mv, grad_mv, coef, cmap_u, mode)¶
- get_eval_shape(mat, par_u, par_w, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- name = 'ev_sd_st_grad_div'¶
- class sfepy.terms.terms_adj_navier_stokes.SDPSPGCStabilizationTerm(name, arg_str, integral, region, **kwargs)[source]¶
Sensitivity (shape derivative) of stabilization terms dw_st_supg_p or dw_st_pspg_c.
- Definition:
![\sum_{K \in \Ical_h}\int_{T_K} \delta_K\
[ \pdiff{r}{x_i} (\ul{b} \cdot \nabla u_i) (\nabla \cdot \Vcal) -
\pdiff{r}{x_k} \pdiff{\Vcal_k}{x_i} (\ul{b} \cdot \nabla u_i)
- \pdiff{r}{x_k} (\ul{b} \cdot \nabla \Vcal_k) \pdiff{u_i}{x_k} ]](../../../_images/math/be8ff40eb78556ca1a1dc24225ea869c7dedec6c.png)
- Call signature:
ev_sd_st_pspg_c
(material, parameter_b, parameter_u, parameter_r, parameter_mv)- Arguments:
material :

parameter_b :

parameter_u :

parameter_r :

parameter_mv :

mode : 1 (sensitivity) or 0 (original term value)
- arg_shapes = {'material': '1, 1', 'parameter_b': 'D', 'parameter_mv': 'D', 'parameter_r': 1, 'parameter_u': 'D'}¶
- arg_types = ('material', 'parameter_b', 'parameter_u', 'parameter_r', 'parameter_mv')¶
- static function(out, state_b, grad_u, grad_r, div_mv, grad_mv, coef, cmap_u, mode)¶
- get_eval_shape(mat, par_b, par_u, par_r, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- get_fargs(mat, par_b, par_u, par_r, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- name = 'ev_sd_st_pspg_c'¶
- class sfepy.terms.terms_adj_navier_stokes.SDPSPGPStabilizationTerm(name, arg_str, integral, region, **kwargs)[source]¶
Sensitivity (shape derivative) of stabilization term dw_st_pspg_p.
- Definition:
![\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ [ (\nabla r \cdot \nabla p)
(\nabla \cdot \Vcal) - \pdiff{r}{x_k} (\nabla \Vcal_k \cdot \nabla p) -
(\nabla r \cdot \nabla \Vcal_k) \pdiff{p}{x_k} ]](../../../_images/math/19403fbc96155f0abc5e946e93665aa9a1f7abd1.png)
- Call signature:
ev_sd_st_pspg_p
(material, parameter_r, parameter_p, parameter_mv)- Arguments:
material :

parameter_r :

parameter_p :

parameter_mv :

mode : 1 (sensitivity) or 0 (original term value)
- arg_shapes = {'material': '1, 1', 'parameter_mv': 'D', 'parameter_p': 1, 'parameter_r': 1}¶
- arg_types = ('material', 'parameter_r', 'parameter_p', 'parameter_mv')¶
- static function(out, grad_r, grad_p, div_mv, grad_mv, coef, cmap_p, mode)¶
- get_eval_shape(mat, par_r, par_p, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- name = 'ev_sd_st_pspg_p'¶
- class sfepy.terms.terms_adj_navier_stokes.SDSUPGCStabilizationTerm(name, arg_str, integral, region, **kwargs)[source]¶
Sensitivity (shape derivative) of stabilization term dw_st_supg_c.
- Definition:
![\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ (\ul{b} \cdot \nabla u_k)
(\ul{b} \cdot \nabla w_k) (\nabla \cdot \Vcal) -
(\ul{b} \cdot \nabla \Vcal_i) \pdiff{u_k}{x_i}
(\ul{b} \cdot \nabla w_k) - (\ul{u} \cdot \nabla u_k)
(\ul{b} \cdot \nabla \Vcal_i) \pdiff{w_k}{x_i} ]](../../../_images/math/1ad0c6e878c28348d3a5062896bbaa711d859e17.png)
- Call signature:
ev_sd_st_supg_c
(material, parameter_b, parameter_u, parameter_w, parameter_mv)- Arguments:
material :

parameter_b :

parameter_u :

parameter_w :

parameter_mv :

mode : 1 (sensitivity) or 0 (original term value)
- arg_shapes = {'material': '1, 1', 'parameter_b': 'D', 'parameter_mv': 'D', 'parameter_u': 'D', 'parameter_w': 'D'}¶
- arg_types = ('material', 'parameter_b', 'parameter_u', 'parameter_w', 'parameter_mv')¶
- static function(out, state_b, grad_u, grad_w, div_mv, grad_mv, coef, cmap_u, mode)¶
- get_eval_shape(mat, par_b, par_u, par_w, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- get_fargs(mat, par_b, par_u, par_w, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- name = 'ev_sd_st_supg_c'¶
- class sfepy.terms.terms_adj_navier_stokes.SUPGCAdjStabilizationTerm(name, arg_str, integral, region, **kwargs)[source]¶
Adjoint term to SUPG stabilization term dw_st_supg_c.
- Definition:
![\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ ((\ul{v} \cdot \nabla)
\ul{u}) ((\ul{u} \cdot \nabla) \ul{w}) + ((\ul{u} \cdot \nabla)
\ul{u}) ((\ul{v} \cdot \nabla) \ul{w}) ]](../../../_images/math/41bc10c3444f1ef3b6863d5f611e5ad0fcad1490.png)
- Call signature:
dw_st_adj_supg_c
(material, virtual, parameter, state)- Arguments:
material :

virtual :

state :

parameter :

- arg_shapes = {'material': '1, 1', 'parameter': 'D', 'state': 'D', 'virtual': ('D', 'state')}¶
- arg_types = ('material', 'virtual', 'parameter', 'state')¶
- static function(out, state_w, state_u, grad_u, coef, cmap, conn, is_diff)¶
- get_fargs(mat, virtual, state, parameter, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- name = 'dw_st_adj_supg_c'¶
- class sfepy.terms.terms_adj_navier_stokes.SUPGPAdj1StabilizationTerm(name, arg_str, integral, region, **kwargs)[source]¶
The first adjoint term to SUPG stabilization term dw_st_supg_p.
- Definition:

- Call signature:
dw_st_adj1_supg_p
(material, virtual, state, parameter)- Arguments:
material :

virtual :

state :

parameter :

- arg_shapes = {'material': '1, 1', 'parameter': 1, 'state': 'D', 'virtual': ('D', 'state')}¶
- arg_types = ('material', 'virtual', 'state', 'parameter')¶
- static function(out, state_w, grad_p, coef, cmap_w, conn_w, is_diff)¶
- get_fargs(mat, virtual, state, parameter, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- name = 'dw_st_adj1_supg_p'¶
- class sfepy.terms.terms_adj_navier_stokes.SUPGPAdj2StabilizationTerm(name, arg_str, integral, region, **kwargs)[source]¶
The second adjoint term to SUPG stabilization term dw_st_supg_p as well as adjoint term to PSPG stabilization term dw_st_pspg_c.
- Definition:

- Call signature:
dw_st_adj2_supg_p
(material, virtual, parameter, state)- Arguments:
material :

virtual :

parameter :

state :

- arg_shapes = {'material': '1, 1', 'parameter': 'D', 'state': 1, 'virtual': ('D', 'state')}¶
- arg_types = ('material', 'virtual', 'parameter', 'state')¶
- static function(out, grad_u, state_r, coef, cmap_u, cmap_r, conn_r, is_diff)¶
- get_fargs(mat, virtual, parameter, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- name = 'dw_st_adj2_supg_p'¶