sfepy.solvers.nls module¶
Nonlinear solvers.
- class sfepy.solvers.nls.Newton(conf, **kwargs)[source]¶
Solves a nonlinear system using the Newton method.
The solver uses a backtracking line-search on divergence.
Kind: ‘nls.newton’
For common configuration parameters, see
Solver
.Specific configuration parameters:
- Parameters:
- i_maxint (default: 1)
The maximum number of iterations.
- eps_afloat (default: 1e-10)
The absolute tolerance for the residual, i.e. .
- eps_rfloat (default: 1.0)
The relative tolerance for the residual, i.e. .
- eps_mode‘and’ or ‘or’ (default: ‘and’)
The logical operator to use for combining the absolute and relative tolerances.
- machepsfloat (default: 2.220446049250313e-16)
The float considered to be machine “zero”.
- lin_redfloat or None (default: 1.0)
The linear system solution error should be smaller than (eps_a * lin_red), otherwise a warning is printed. If None, the check is skipped.
- lin_precisionfloat or None
If not None, the linear system solution tolerances are set in each nonlinear iteration relative to the current residual norm by the lin_precision factor. Ignored for direct linear solvers.
- step_red0.0 < float <= 1.0 (default: 1.0)
Step reduction factor. Equivalent to the mixing parameter :
- line_search_funfunction(it, vec_x0, vec_dx0, err_last, conf, fun, timers, log=None) (default: <function apply_line_search_bt at 0x79db4110c3a0>)
The line search function.
- ls_onfloat (default: 0.99999)
Start the backtracking line-search by reducing the step, if is larger than ls_on.
- ls_red0.0 < float < 1.0 (default: 0.1)
The step reduction factor in case of correct residual assembling.
- ls_red_warp0.0 < float < 1.0 (default: 0.001)
The step reduction factor in case of failed residual assembling (e.g. the “warp violation” error caused by a negative volume element resulting from too large deformations).
- ls_min0.0 < float < 1.0 (default: 1e-05)
The minimum step reduction factor.
- give_up_warpbool (default: False)
If True, abort on the “warp violation” error.
- check0, 1 or 2 (default: 0)
If >= 1, check the tangent matrix using finite differences. If 2, plot the resulting sparsity patterns.
- deltafloat (default: 1e-06)
If check >= 1, the finite difference matrix is taken as .
- logdict or None
If not None, log the convergence according to the configuration in the following form:
{'text' : 'log.txt', 'plot' : 'log.pdf'}
. Each of the dict items can be None.- log_vlines‘iteration’ or ‘solve’ or both (default: (‘solve’,))
Put log vertical lines after each iteration and/or before the solve.
- is_linearbool (default: False)
If True, the problem is considered to be linear.
- __annotations__ = {}¶
- __call__(vec_x0, conf=None, fun=None, fun_grad=None, lin_solver=None, iter_hook=None, status=None, **kwargs)[source]¶
Call self as a function.
- __module__ = 'sfepy.solvers.nls'¶
- name = 'nls.newton'¶
- class sfepy.solvers.nls.PETScNonlinearSolver(conf, pmtx=None, prhs=None, comm=None, **kwargs)[source]¶
Interface to PETSc SNES (Scalable Nonlinear Equations Solvers).
The solver supports parallel use with a given MPI communicator (see comm argument of
PETScNonlinearSolver.__init__()
). Returns a (global) PETSc solution vector instead of a (local) numpy array, when given a PETSc initial guess vector.For parallel use, the fun and fun_grad callbacks should be provided by
PETScParallelEvaluator
.Kind: ‘nls.petsc’
For common configuration parameters, see
Solver
.Specific configuration parameters:
- Parameters:
- methodstr (default: ‘newtonls’)
The SNES type.
- i_maxint (default: 10)
The maximum number of iterations.
- if_maxint (default: 100)
The maximum number of function evaluations.
- eps_afloat (default: 1e-10)
The absolute tolerance for the residual, i.e. .
- eps_rfloat (default: 1.0)
The relative tolerance for the residual, i.e. .
- eps_sfloat (default: 0.0)
The convergence tolerance in terms of the norm of the change in the solution between steps, i.e. $||delta x|| < epsilon_s ||x||$
- __annotations__ = {}¶
- __call__(vec_x0, conf=None, fun=None, fun_grad=None, lin_solver=None, iter_hook=None, status=None, **kwargs)[source]¶
Call self as a function.
- __module__ = 'sfepy.solvers.nls'¶
- name = 'nls.petsc'¶
- class sfepy.solvers.nls.ScipyBroyden(conf, **kwargs)[source]¶
Interface to Broyden and Anderson solvers from
scipy.optimize
.Kind: ‘nls.scipy_broyden_like’
For common configuration parameters, see
Solver
.Specific configuration parameters:
- Parameters:
- methodstr (default: ‘anderson’)
The name of the solver in
scipy.optimize
.- i_maxint (default: 10)
The maximum number of iterations.
- alphafloat (default: 0.9)
See
scipy.optimize
.- Mfloat (default: 5)
See
scipy.optimize
.- f_tolfloat (default: 1e-06)
See
scipy.optimize
.- w0float (default: 0.1)
See
scipy.optimize
.
- __annotations__ = {}¶
- __call__(vec_x0, conf=None, fun=None, fun_grad=None, lin_solver=None, iter_hook=None, status=None, **kwargs)[source]¶
Call self as a function.
- __module__ = 'sfepy.solvers.nls'¶
- name = 'nls.scipy_broyden_like'¶
- sfepy.solvers.nls.apply_line_search_bt(vec_x0, vec_dx0, it, err_last, conf, fun, timers, log=None, context=None)[source]¶
Apply a backtracking line-search.
- sfepy.solvers.nls.check_tangent_matrix(conf, vec_x0, fun, fun_grad)[source]¶
Verify the correctness of the tangent matrix as computed by fun_grad() by comparing it with its finite difference approximation evaluated by repeatedly calling fun() with vec_x0 items perturbed by a small delta.
- sfepy.solvers.nls.conv_test(conf, it, err, err0)[source]¶
Nonlinear solver convergence test.
- Parameters:
- confStruct instance
The nonlinear solver configuration.
- itint
The current iteration.
- errfloat
The current iteration error.
- err0float
The initial error.
- Returns:
- statusint
The convergence status: -1 = no convergence (yet), 0 = solver converged - tolerances were met, 1 = max. number of iterations reached.