sfepy.terms.terms_multilinear module¶
- class sfepy.terms.terms_multilinear.ECauchyStressTerm(*args, **kwargs)[source]¶
Evaluate Cauchy stress tensor.
It is given in the usual vector form exploiting symmetry: in 3D it has 6 components with the indices ordered as , in 2D it has 3 components with the indices ordered as .
- Definition:
- Call signature:
de_cauchy_stress
(material, parameter)
- Arguments:
material :
parameter :
- arg_shapes = {'material': 'S, S', 'parameter': 'D'}¶
- arg_types = ('material', 'parameter')¶
- name = 'de_cauchy_stress'¶
- class sfepy.terms.terms_multilinear.EConvectTerm(*args, **kwargs)[source]¶
Nonlinear convective term.
- Definition:
- Call signature:
de_convect
(virtual, state)
(parameter_1, parameter_2)
- Arguments:
virtual/parameter_1:
state/parameter_2:
- arg_shapes = {'parameter_1': 'D', 'parameter_2': 'D', 'state': 'D', 'virtual': ('D', 'state')}¶
- arg_types = (('virtual', 'state'), ('parameter_1', 'parameter_2'))¶
- modes = ('weak', 'eval')¶
- name = 'de_convect'¶
- class sfepy.terms.terms_multilinear.EDiffusionTerm(*args, **kwargs)[source]¶
General diffusion term.
- Definition:
- Call signature:
de_diffusion
(material, virtual, state)
(material, parameter_1, parameter_2)
- Arguments:
material:
virtual/parameter_1:
state/parameter_2:
- arg_shapes = {'material': 'D, D', 'parameter_1': 1, 'parameter_2': 1, 'state': 1, 'virtual': (1, 'state')}¶
- arg_types = (('material', 'virtual', 'state'), ('material', 'parameter_1', 'parameter_2'))¶
- modes = ('weak', 'eval')¶
- name = 'de_diffusion'¶
- class sfepy.terms.terms_multilinear.EDivGradTerm(*args, **kwargs)[source]¶
Vector field diffusion term.
- Definition:
- Call signature:
de_div_grad
(opt_material, virtual, state)
(opt_material, parameter_1, parameter_2)
- Arguments:
material: (viscosity, optional)
virtual/parameter_1:
state/parameter_2:
- arg_shapes = [{'opt_material': '1, 1', 'parameter_1': 'D', 'parameter_2': 'D', 'state': 'D', 'virtual': ('D', 'state')}, {'opt_material': None}]¶
- arg_types = (('opt_material', 'virtual', 'state'), ('opt_material', 'parameter_1', 'parameter_2'))¶
- modes = ('weak', 'eval')¶
- name = 'de_div_grad'¶
- class sfepy.terms.terms_multilinear.EDivTerm(*args, **kwargs)[source]¶
Weighted divergence term.
- Definition:
- Call signature:
de_div
(opt_material, virtual)
(opt_material, parameter)
- Arguments:
material: (optional)
virtual/parameter:
- arg_shapes = [{'opt_material': '1, 1', 'parameter': 'D', 'virtual': ('D', None)}, {'opt_material': None}]¶
- arg_types = (('opt_material', 'virtual'), ('opt_material', 'parameter'))¶
- modes = ('weak', 'eval')¶
- name = 'de_div'¶
- class sfepy.terms.terms_multilinear.EDotTerm(*args, **kwargs)[source]¶
Volume and surface weighted dot product for both scalar and vector fields. Can be evaluated. Can use derivatives.
- Definition:
- Call signature:
de_dot
(opt_material, virtual, state)
(opt_material, parameter_1, parameter_2)
- Arguments:
material: or (optional)
virtual/parameter_1: or
state/parameter_2: or
- arg_shapes = [{'opt_material': '1, 1', 'parameter_1': 1, 'parameter_2': 1, 'state': 1, 'virtual': (1, 'state')}, {'opt_material': None}, {'opt_material': '1, 1', 'parameter_1': 'D', 'parameter_2': 'D', 'state': 'D', 'virtual': ('D', 'state')}, {'opt_material': 'D, D'}, {'opt_material': None}, {'opt_material': '1, 1', 'parameter_1': 'N', 'parameter_2': 'N', 'state': 'N', 'virtual': ('N', 'state')}, {'opt_material': 'N, N'}, {'opt_material': None}]¶
- arg_types = (('opt_material', 'virtual', 'state'), ('opt_material', 'parameter_1', 'parameter_2'))¶
- integration = ('cell', 'facet')¶
- modes = ('weak', 'eval')¶
- name = 'de_dot'¶
- class sfepy.terms.terms_multilinear.EGradTerm(*args, **kwargs)[source]¶
Weighted gradient term.
- Definition:
- Call signature:
de_grad
(opt_material, parameter)
- Arguments:
material: (optional)
virtual/parameter:
- arg_shapes = [{'opt_material': '1, 1', 'parameter': 'N'}, {'opt_material': 'N, 1'}, {'opt_material': 'N, N'}, {'opt_material': None}]¶
- arg_types = ('opt_material', 'parameter')¶
- name = 'de_grad'¶
- class sfepy.terms.terms_multilinear.EIntegrateOperatorTerm(*args, **kwargs)[source]¶
Volume and surface integral of a test function weighted by a scalar function .
- Definition:
- Call signature:
de_integrate
(opt_material, virtual)
- Arguments:
material : (optional)
virtual :
- arg_shapes = [{'opt_material': '1, 1', 'virtual': (1, None)}, {'opt_material': None}]¶
- arg_types = ('opt_material', 'virtual')¶
- integration = ('cell', 'facet')¶
- name = 'de_integrate'¶
- class sfepy.terms.terms_multilinear.ELaplaceTerm(*args, **kwargs)[source]¶
Laplace term with coefficient. Can be evaluated. Can use derivatives.
- Definition:
- Call signature:
de_laplace
(opt_material, virtual, state)
(opt_material, parameter_1, parameter_2)
- Arguments:
material:
virtual/parameter_1:
state/parameter_2:
- arg_shapes = [{'opt_material': '1, 1', 'parameter_1': 1, 'parameter_2': 1, 'state': 1, 'virtual': (1, 'state')}, {'opt_material': None}]¶
- arg_types = (('opt_material', 'virtual', 'state'), ('opt_material', 'parameter_1', 'parameter_2'))¶
- modes = ('weak', 'eval')¶
- name = 'de_laplace'¶
- class sfepy.terms.terms_multilinear.ELinearConvectTerm(*args, **kwargs)[source]¶
Linearized convective term.
- Definition:
- Call signature:
de_lin_convect
(virtual, parameter, state)
(parameter_1, parameter_2, parameter_3)
- Arguments:
virtual/parameter_1:
parameter/parameter_2:
state/parameter_3:
- arg_shapes = {'parameter': 'D', 'parameter_1': 'D', 'parameter_2': 'D', 'parameter_3': 'D', 'state': 'D', 'virtual': ('D', 'state')}¶
- arg_types = (('virtual', 'parameter', 'state'), ('parameter_1', 'parameter_2', 'parameter_3'))¶
- get_function(virtual, parameter, state, mode=None, term_mode=None, diff_var=None, **kwargs)[source]¶
- modes = ('weak', 'eval')¶
- name = 'de_lin_convect'¶
- class sfepy.terms.terms_multilinear.ELinearElasticTerm(*args, **kwargs)[source]¶
General linear elasticity term, with given in the usual matrix form exploiting symmetry: in 3D it is with the indices ordered as , in 2D it is with the indices ordered as .
- Definition:
- Call signature:
de_lin_elastic
(material, virtual, state)
(material, parameter_1, parameter_2)
- Arguments:
material:
virtual/parameter_1:
state/parameter_2:
- arg_shapes = {'material': 'S, S', 'parameter_1': 'D', 'parameter_2': 'D', 'state': 'D', 'virtual': ('D', 'state')}¶
- arg_types = (('material', 'virtual', 'state'), ('material', 'parameter_1', 'parameter_2'))¶
- modes = ('weak', 'eval')¶
- name = 'de_lin_elastic'¶
- class sfepy.terms.terms_multilinear.ELinearTractionTerm(*args, **kwargs)[source]¶
Linear traction term. The material parameter can have one of the following shapes:
1 or (1, 1) - a given scalar pressure
(D, 1) - a traction vector
(S, 1) or (D, D) - a given stress in symmetric or non-symmetric tensor storage (in symmetric storage indicies are order as follows: 2D: [11, 22, 12], 3D: [11, 22, 33, 12, 13, 23])
- Definition:
- Call signature:
de_surface_ltr
(opt_material, virtual)
(opt_material, parameter)
- Arguments:
material: , , or
virtual/parameter:
- arg_shapes = [{'opt_material': 'S, 1', 'parameter': 'D', 'virtual': ('D', None)}, {'opt_material': None}, {'opt_material': '1, 1'}, {'opt_material': 'D, 1'}, {'opt_material': 'D, D'}]¶
- arg_types = (('opt_material', 'virtual'), ('opt_material', 'parameter'))¶
- integration = 'facet'¶
- modes = ('weak', 'eval')¶
- name = 'de_surface_ltr'¶
- class sfepy.terms.terms_multilinear.ENonPenetrationPenaltyTerm(*args, **kwargs)[source]¶
Non-penetration condition in the weak sense using a penalty.
- Definition:
- Call signature:
de_non_penetration_p
(material, virtual, state)
- Arguments:
material :
virtual :
state :
- arg_shapes = {'material': '1, 1', 'state': 'D', 'virtual': ('D', 'state')}¶
- arg_types = ('material', 'virtual', 'state')¶
- integration = 'facet'¶
- name = 'de_non_penetration_p'¶
- class sfepy.terms.terms_multilinear.ENonSymElasticTerm(*args, **kwargs)[source]¶
Elasticity term with non-symmetric gradient. The indices of matrix are ordered as in 3D and as in 2D.
- Definition:
- Call signature:
de_nonsym_elastic
(material, virtual, state)
(material, parameter_1, parameter_2)
- Arguments:
material:
virtual/parameter_1:
state/parameter_2:
- arg_shapes = {'material': 'D2, D2', 'parameter_1': 'D', 'parameter_2': 'D', 'state': 'D', 'virtual': ('D', 'state')}¶
- arg_types = (('material', 'virtual', 'state'), ('material', 'parameter_1', 'parameter_2'))¶
- modes = ('weak', 'eval')¶
- name = 'de_nonsym_elastic'¶
- class sfepy.terms.terms_multilinear.EScalarDotMGradScalarTerm(*args, **kwargs)[source]¶
Volume dot product of a scalar gradient dotted with a material vector with a scalar.
- Definition:
- Call signature:
de_s_dot_mgrad_s
(material, virtual, state)
(material, state, virtual)
(material, parameter_1, parameter_2)
- Arguments 1:
material :
virtual :
state :
- Arguments 2:
material :
state :
virtual :
- arg_shapes = [{'material': 'D, 1', 'parameter_1': 1, 'parameter_2': 1, 'state/grad_state': 1, 'state/grad_virtual': 1, 'virtual/grad_state': (1, None), 'virtual/grad_virtual': (1, None)}]¶
- arg_types = (('material', 'virtual', 'state'), ('material', 'state', 'virtual'), ('material', 'parameter_1', 'parameter_2'))¶
- modes = ('grad_state', 'grad_virtual', 'eval')¶
- name = 'de_s_dot_mgrad_s'¶
- class sfepy.terms.terms_multilinear.EStokesTerm(*args, **kwargs)[source]¶
Stokes problem coupling term. Corresponds to weak forms of gradient and divergence terms.
- Definition:
- Call signature:
de_stokes
(opt_material, virtual, state)
(opt_material, state, virtual)
(opt_material, parameter_v, parameter_s)
- Arguments 1:
material: (optional)
virtual/parameter_v:
state/parameter_s:
- Arguments 2:
material : (optional)
state :
virtual :
- arg_shapes = [{'opt_material': '1, 1', 'parameter_s': 1, 'parameter_v': 'D', 'state/div': 'D', 'state/grad': 1, 'virtual/div': (1, None), 'virtual/grad': ('D', None)}, {'opt_material': None}]¶
- arg_types = (('opt_material', 'virtual', 'state'), ('opt_material', 'state', 'virtual'), ('opt_material', 'parameter_v', 'parameter_s'))¶
- modes = ('grad', 'div', 'eval')¶
- name = 'de_stokes'¶
- class sfepy.terms.terms_multilinear.ETermBase(*args, **kwargs)[source]¶
Reserved letters:
c .. cells q .. quadrature points d-h .. DOFs axes r-z .. auxiliary axes
Layout specification letters:
c .. cells q .. quadrature points v .. variable component - matrix form (v, d) -> vector v*d g .. gradient component d .. local DOF (basis, node) 0 .. all material axes
- can_backend = {'dask_single': <module 'dask.array' from '/home/eldaran/.local/lib/python3.10/site-packages/dask/array/__init__.py'>, 'dask_threads': <module 'dask.array' from '/home/eldaran/.local/lib/python3.10/site-packages/dask/array/__init__.py'>, 'jax': <module 'jax.numpy' from '/home/eldaran/.local/lib/python3.10/site-packages/jax/numpy/__init__.py'>, 'jax_vmap': <module 'jax.numpy' from '/home/eldaran/.local/lib/python3.10/site-packages/jax/numpy/__init__.py'>, 'numpy': <module 'numpy' from '/home/eldaran/.local/lib/python3.10/site-packages/numpy/__init__.py'>, 'numpy_loop': <module 'numpy' from '/home/eldaran/.local/lib/python3.10/site-packages/numpy/__init__.py'>, 'numpy_qloop': <module 'numpy' from '/home/eldaran/.local/lib/python3.10/site-packages/numpy/__init__.py'>, 'opt_einsum': <module 'opt_einsum' from '/home/eldaran/.local/lib/python3.10/site-packages/opt_einsum/__init__.py'>, 'opt_einsum_dask_single': <module 'dask.array' from '/home/eldaran/.local/lib/python3.10/site-packages/dask/array/__init__.py'>, 'opt_einsum_dask_threads': <module 'dask.array' from '/home/eldaran/.local/lib/python3.10/site-packages/dask/array/__init__.py'>, 'opt_einsum_loop': <module 'opt_einsum' from '/home/eldaran/.local/lib/python3.10/site-packages/opt_einsum/__init__.py'>, 'opt_einsum_qloop': <module 'opt_einsum' from '/home/eldaran/.local/lib/python3.10/site-packages/opt_einsum/__init__.py'>}¶
- layout_letters = 'cqgvd0'¶
- verbosity = 0¶
- class sfepy.terms.terms_multilinear.SurfaceFluxOperatorTerm(*args, **kwargs)[source]¶
Surface flux operator term.
- Definition:
- Call signature:
de_surface_flux
(material, virtual, state)
(material, state, virtual)
(material, parameter_1, parameter_2)
- Arguments 1:
material :
virtual :
state :
- Arguments 2:
material :
state :
virtual :
- arg_shapes = [{'material': 'D, D', 'parameter_1': 1, 'parameter_2': 1, 'state/grad_state': 1, 'state/grad_virtual': 1, 'virtual/grad_state': (1, None), 'virtual/grad_virtual': (1, None)}]¶
- arg_types = (('material', 'virtual', 'state'), ('material', 'state', 'virtual'), ('material', 'parameter_1', 'parameter_2'))¶
- integration = 'facet_extra'¶
- modes = ('grad_state', 'grad_virtual', 'eval')¶
- name = 'de_surface_flux'¶
- class sfepy.terms.terms_multilinear.SurfacePiezoFluxOperatorTerm(*args, **kwargs)[source]¶
Surface piezoelectric flux operator term.
Corresponds to the electric flux due to mechanically induced electrical displacement.
- Definition:
- Call signature:
de_surface_piezo_flux
(material, virtual, state)
(material, state, virtual)
(material, parameter_1, parameter_2)
- Arguments 1:
material :
virtual/parameter_1 :
state/parameter_2 :
- Arguments 2:
material :
state :
virtual :
- arg_shapes = [{'material': 'D, S', 'parameter_1': 1, 'parameter_2': 'D', 'state/grad_state': 'D', 'state/grad_virtual': 1, 'virtual/grad_state': (1, None), 'virtual/grad_virtual': ('D', None)}]¶
- arg_types = (('material', 'virtual', 'state'), ('material', 'state', 'virtual'), ('material', 'parameter_1', 'parameter_2'))¶
- integration = 'facet_extra'¶
- modes = ('grad_state', 'grad_virtual', 'eval')¶
- name = 'de_surface_piezo_flux'¶
- class sfepy.terms.terms_multilinear.SurfacePiezoFluxTerm(*args, **kwargs)[source]¶
Surface piezoelectric flux term.
Corresponds to the electric flux due to mechanically induced electrical displacement.
- Definition:
- Call signature:
ev_surface_piezo_flux
(material, parameter)
- Arguments 1:
material :
parameter :
- arg_shapes = {'material': 'D, S', 'parameter': 'D'}¶
- arg_types = ('material', 'parameter')¶
- integration = 'facet_extra'¶
- modes = ('eval',)¶
- name = 'ev_surface_piezo_flux'¶