sfepy.homogenization.recovery module

sfepy.homogenization.recovery.add_strain_rs(corrs_rs, strain, vu, dim, iel, out=None)[source]
sfepy.homogenization.recovery.add_stress_p(out, pb, integral, region, vp, data)[source]
sfepy.homogenization.recovery.combine_scalar_grad(corrs, grad, vn, ii, shift_coors=None)[source]

\eta_k \partial_k^x p

or

(y_k + \eta_k) \partial_k^x p

sfepy.homogenization.recovery.compute_mac_stress_part(pb, integral, region, material, vu, mac_strain)[source]
sfepy.homogenization.recovery.compute_micro_u(corrs, strain, vu, dim, out=None)[source]

Micro displacements.

\bm{u}^1 = \bm{\chi}^{ij}\, e_{ij}^x(\bm{u}^0)

sfepy.homogenization.recovery.compute_p_corr_steady(corrs_pressure, pressure, vp, iel)[source]

\widetilde\pi^P\,p

sfepy.homogenization.recovery.compute_p_corr_time(corrs_rs, dstrains, corrs_pressure, pressures, vdp, dim, iel, ts)[source]

\sum_{ij} \int_0^t {\mathrm{d} \over \mathrm{d} t}
\widetilde\pi^{ij}(t-s)\, {\mathrm{d} \over \mathrm{d} s}
e_{ij}(\bm{u}(s))\,ds
+ \int_0^t {\mathrm{d} \over \mathrm{d} t}\widetilde\pi^P(t-s)\,p(s)\,ds

sfepy.homogenization.recovery.compute_p_from_macro(p_grad, coor, iel, centre=None, extdim=0)[source]

Macro-induced pressure.

\partial_j^x p\,(y_j - y_j^c)

sfepy.homogenization.recovery.compute_stress_strain_u(pb, integral, region, material, vu, data)[source]
sfepy.homogenization.recovery.compute_u_corr_steady(corrs_rs, strain, vu, dim, iel)[source]

\sum_{ij} \bm{\omega}^{ij}\, e_{ij}(\bm{u})

Notes

  • iel = element number
sfepy.homogenization.recovery.compute_u_corr_time(corrs_rs, dstrains, corrs_pressure, pressures, vu, dim, iel, ts)[source]

\sum_{ij} \left[ \int_0^t \bm{\omega}^{ij}(t-s) {\mathrm{d} \over
\mathrm{d} s} e_{ij}(\bm{u}(s))\,ds\right] + \int_0^t
\widetilde{\bm{\omega}}^P(t-s)\,p(s)\,ds

sfepy.homogenization.recovery.compute_u_from_macro(strain, coor, iel, centre=None)[source]

Macro-induced displacements.

e_{ij}^x(\bm{u})\,(y_j - y_j^c)

sfepy.homogenization.recovery.convolve_field_scalar(fvars, pvars, iel, ts)[source]

\int_0^t f(t-s) p(s) ds

Notes

  • t is given by step
  • f: fvars scalar field variables, defined in a micro domain, have shape [step][fmf dims]
  • p: pvars scalar point variables, a scalar in a point of macro-domain, FMField style have shape [n_step][var dims]
sfepy.homogenization.recovery.convolve_field_sym_tensor(fvars, pvars, var_name, dim, iel, ts)[source]

\int_0^t f^{ij}(t-s) p_{ij}(s) ds

Notes

  • t is given by step
  • f: fvars field variables, defined in a micro domain, have shape [step][fmf dims]
  • p: pvars sym. tensor point variables, a scalar in a point of macro-domain, FMField style, have shape [dim, dim][var_name][n_step][var dims]
sfepy.homogenization.recovery.get_output_suffix(iel, ts, naming_scheme, format, output_format)[source]
sfepy.homogenization.recovery.recover_bones(problem, micro_problem, region, eps0, ts, strain, dstrains, p_grad, pressures, corrs_permeability, corrs_rs, corrs_time_rs, corrs_pressure, corrs_time_pressure, var_names, naming_scheme=’step_iel’)[source]

Notes

  • note that

    \widetilde{\pi}^P

    is in corrs_pressure -> from time correctors only ‘u’, ‘dp’ are needed.

sfepy.homogenization.recovery.recover_micro_hook(micro_filename, region, macro, naming_scheme=’step_iel’, recovery_file_tag=”, define_args=None, verbose=False)[source]
sfepy.homogenization.recovery.recover_micro_hook_eps(micro_filename, region, eval_var, nodal_values, const_values, eps0, recovery_file_tag=”, define_args=None, verbose=False)[source]
sfepy.homogenization.recovery.recover_paraflow(problem, micro_problem, region, ts, strain, dstrains, pressures1, pressures2, corrs_rs, corrs_time_rs, corrs_alpha1, corrs_time_alpha1, corrs_alpha2, corrs_time_alpha2, var_names, naming_scheme=’step_iel’)[source]
sfepy.homogenization.recovery.save_recovery_region(mac_pb, rname, filename=None)[source]