sfepy.homogenization.coefs_elastic module

class sfepy.homogenization.coefs_elastic.GBarCoef(name, problem, kwargs)[source]

Asymptotic Barenblatt coefficient.

data = [p^{infty}]

Note:

solving “dw_diffusion.i1.Y3( m.K, qc, pc ) = 0” solve, in fact “C p^{infty} = hat{C} hat{pi}” with the result “hat{p^{infty}}”, where the rhs comes from E(P)BC. - it is preferable to computing directly by “hat{p^{infty}} = hat{C^-1 strip(hat{C} hat{pi})}”, as it checks explicitly the residual.

class sfepy.homogenization.coefs_elastic.GPlusCoef(name, problem, kwargs)[source]
get_filename(data)[source]
class sfepy.homogenization.coefs_elastic.PressureRHSVector(name, problem, kwargs)[source]
class sfepy.homogenization.coefs_elastic.RBiotCoef(name, problem, kwargs)[source]

Homogenized fading memory Biot-like coefficient.

get_filename(data, ir, ic)[source]
get_variables(problem, io, step, data, mode)[source]
class sfepy.homogenization.coefs_elastic.TCorrectorsPressureViaPressureEVP(name, problem, kwargs)[source]
get_dump_name_base()[source]
get_save_name_base()[source]
class sfepy.homogenization.coefs_elastic.TCorrectorsRSViaPressureEVP(name, problem, kwargs)[source]
get_dump_name_base()[source]
get_save_name_base()[source]
sfepy.homogenization.coefs_elastic.eval_boundary_diff_vel_grad(problem, uc, pc, equation, region_name, pi=None)[source]