multi_physics/biot_npbc_lagrange.py

Description

Biot problem - deformable porous medium with the no-penetration boundary condition on a boundary region enforced using Lagrange multipliers.

The non-penetration condition is enforced weakly using the Lagrange multiplier \lambda. There is also a rigid body movement constraint imposed on the \Gamma_{outlet} region using the linear combination boundary conditions.

Find \ul{u}, p and \lambda such that:

\int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})
- \int_{\Omega}  p\ \alpha_{ij} e_{ij}(\ul{v})
+ \int_{\Gamma_{walls}} \lambda \ul{n} \cdot \ul{v}
= 0
\;, \quad \forall \ul{v} \;,

\int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u})
+ \int_{\Omega} K_{ij} \nabla_i q \nabla_j p
= 0
\;, \quad \forall q \;,

\int_{\Gamma_{walls}} \hat\lambda \ul{n} \cdot \ul{u}
= 0
\;, \quad \forall \hat\lambda \;,

\ul{u} \cdot \ul{n} = 0 \mbox{ on } \Gamma_{walls} \;,

where

D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) +
\lambda \ \delta_{ij} \delta_{kl}
\;.

../_images/multi_physics-biot_npbc_lagrange1.png

source code

r"""
Biot problem - deformable porous medium with the no-penetration boundary
condition on a boundary region enforced using Lagrange multipliers.

The non-penetration condition is enforced weakly using the Lagrange
multiplier :math:`\lambda`. There is also a rigid body movement
constraint imposed on the :math:`\Gamma_{outlet}` region using the
linear combination boundary conditions.

Find :math:`\ul{u}`, :math:`p` and :math:`\lambda` such that:

.. math::
    \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u})
    - \int_{\Omega}  p\ \alpha_{ij} e_{ij}(\ul{v})
    + \int_{\Gamma_{walls}} \lambda \ul{n} \cdot \ul{v}
    = 0
    \;, \quad \forall \ul{v} \;,

    \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u})
    + \int_{\Omega} K_{ij} \nabla_i q \nabla_j p
    = 0
    \;, \quad \forall q \;,

    \int_{\Gamma_{walls}} \hat\lambda \ul{n} \cdot \ul{u}
    = 0
    \;, \quad \forall \hat\lambda \;,

    \ul{u} \cdot \ul{n} = 0 \mbox{ on } \Gamma_{walls} \;,

where

.. math::
    D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) +
    \lambda \ \delta_{ij} \delta_{kl}
    \;.
"""
from __future__ import absolute_import
from examples.multi_physics.biot_npbc import (cinc_simple, define_regions,
                                              get_pars)

def define():
    from sfepy import data_dir

    filename = data_dir + '/meshes/3d/cylinder.mesh'
    output_dir = 'output'
    return define_input(filename, output_dir)

def post_process(out, pb, state, extend=False):
    from sfepy.base.base import Struct

    dvel = pb.evaluate('ev_diffusion_velocity.2.Omega( m.K, p )',
                       mode='el_avg')
    out['dvel'] = Struct(name='output_data', var_name='p',
                         mode='cell', data=dvel, dofs=None)

    stress = pb.evaluate('ev_cauchy_stress.2.Omega( m.D, u )',
                         mode='el_avg')
    out['cauchy_stress'] = Struct(name='output_data', var_name='u',
                                  mode='cell', data=stress, dofs=None)
    return out

def define_input(filename, output_dir):

    filename_mesh = filename
    options = {
        'output_dir' : output_dir,
        'output_format' : 'vtk',
        'post_process_hook' : 'post_process',
        ## 'file_per_var' : True,

        'ls' : 'ls',
        'nls' : 'newton',
    }

    functions = {
        'cinc_simple0' : (lambda coors, domain:
                          cinc_simple(coors, 0),),
        'cinc_simple1' : (lambda coors, domain:
                          cinc_simple(coors, 1),),
        'cinc_simple2' : (lambda coors, domain:
                          cinc_simple(coors, 2),),
        'get_pars' : (lambda ts, coors, mode=None, **kwargs:
                      get_pars(ts, coors, mode,
                               output_dir=output_dir, **kwargs),),
    }
    regions, dim = define_regions(filename_mesh)

    fields = {
        'displacement': ('real', 'vector', 'Omega', 1),
        'pressure': ('real', 'scalar', 'Omega', 1),
        'multiplier': ('real', 'scalar', 'Walls', 1),
    }

    variables = {
        'u'  : ('unknown field', 'displacement', 0),
        'v'  : ('test field',    'displacement', 'u'),
        'p'  : ('unknown field', 'pressure', 1),
        'q'  : ('test field',    'pressure', 'p'),
        'ul' : ('unknown field', 'multiplier', 2),
        'vl' : ('test field',    'multiplier', 'ul'),
    }

    ebcs = {
        'inlet' : ('Inlet', {'p.0' : 1.0, 'u.all' : 0.0}),
        'outlet' : ('Outlet', {'p.0' : -1.0}),
    }

    lcbcs = {
        'rigid' : ('Outlet', {'u.all' : None}, None, 'rigid'),
    }

    materials = {
        'm' : 'get_pars',
    }

    equations = {
        'eq_1' :
        """dw_lin_elastic.2.Omega( m.D, v, u )
         - dw_biot.2.Omega( m.alpha, v, p )
         + dw_non_penetration.2.Walls( v, ul )
         = 0""",
        'eq_2' :
        """dw_biot.2.Omega( m.alpha, u, q )
         + dw_diffusion.2.Omega( m.K, q, p )
         = 0""",
        'eq_3' :
        """dw_non_penetration.2.Walls( u, vl )
         = 0""",
    }

    solvers = {
        'ls' : ('ls.scipy_direct', {}),
        'newton' : ('nls.newton', {}),
    }

    return locals()