Source code for sfepy.terms.terms_hyperelastic_base

import numpy as nm
from sfepy.terms.terms import Term, terms
from sfepy.base.base import Struct
from sfepy import site_config

import six

_msg_missing_data = 'missing family data!'

[docs] class HyperElasticFamilyData(Struct): """ Base class for hyperelastic family data. The common (family) data are cached in the evaluate cache of state variable. """ data_shapes = { 'mtx_f': ('n_el', 'n_qp', 'dim', 'dim'), 'det_f': ('n_el', 'n_qp', 1, 1), 'sym_b': ('n_el', 'n_qp', 'sym', 1), 'tr_b': ('n_el', 'n_qp', 1, 1), 'in2_b': ('n_el', 'n_qp', 1, 1), 'sym_c' : ('n_el', 'n_qp', 'sym', 1), 'tr_c' : ('n_el', 'n_qp', 1, 1), 'in2_c' : ('n_el', 'n_qp', 1, 1), 'sym_inv_c' : ('n_el', 'n_qp', 'sym', 1), 'green_strain': ('n_el', 'n_qp', 'sym', 1), 'inv_f': ('n_el', 'n_qp', 'dim', 'dim'), } def __init__(self, **kwargs): Struct.__init__(self, **kwargs)
[docs] def init_data_struct(self, state_shape, name='family_data'): from sfepy.mechanics.tensors import dim2sym n_el, n_qp, dim, n_en, n_c = state_shape sym = dim2sym(dim); sym shdict = dict(( (k, v) for k, v in six.iteritems(locals())\ if k in ['n_el', 'n_qp', 'dim', 'n_en', 'n_c', 'sym'])) data = Struct(name=name) setattr(data, 'names', self.data_names) for key in self.data_names: shape = [shdict[sh] if type(sh) is str else sh\ for sh in self.data_shapes[key]] setattr(data, key, nm.zeros(shape, dtype=nm.float64)) return data
def __call__(self, state, region, integral, geometry_type, step=0, derivative=None): step_cache = state.evaluate_cache.setdefault(self.cache_name, {}) cache = step_cache.setdefault(step, {}) key = (region.name, integral.order, geometry_type) data_key = key + (derivative,) if data_key in cache: data = cache[data_key] else: vg, _ = state.field.get_mapping(region, integral, geometry_type[0], get_saved=True) vec = state(step=step, derivative=derivative) econn = state.field.get_econn('cell', region) st_shape = state.get_data_shape(integral, geometry_type[0], region.name) data = self.init_data_struct(st_shape) fargs = tuple([getattr(data, k) for k in self.data_names]) fargs = fargs + (vec, vg, econn) fargs = Term.translate_fargs_mapping(self.family_function, list(fargs)) self.family_function(*fargs) cache[data_key] = data det_f = data.det_f # Minimum over quadrature points. jmin = nm.min(det_f, axis=1, keepdims=True) jneg = jmin < 0.0 is_warp = jneg.any() if is_warp: if site_config.debug_warped_cells(): from sfepy.base.base import output from sfepy.discrete.fem import extend_cell_data output('warped (negative volume) elements:') output(nm.unique(nm.nonzero(jneg[:, 0, 0, 0])[0])) mesh = region.domain.mesh jmin = extend_cell_data(jmin, region.domain, region.name, val=jmin.max()) jneg = extend_cell_data(jneg.astype(nm.float64), region.domain, region.name, val=0.0) out = { 'jmin' : Struct(name='output_data', mode='cell', data=jmin), 'jneg' : Struct(name='output_data', mode='cell', data=jneg), } mesh.write('warped_cells.vtk', io='auto', out=out) raise RuntimeError( "inspect 'warped_cells.vtk' for negative volume cells" ) raise ValueError('warp violation!') return data
[docs] class HyperElasticBase(Term): """ Base class for all hyperelastic terms in TL/UL formulation. `HyperElasticBase.__call__()` computes element contributions given either stress (-> residual) or tangent modulus (-> tangent sitffnes matrix), i.e. constitutive relation type (CRT) related data. The CRT data are computed in subclasses implementing particular CRT (e.g. neo-Hookean material), in self.compute_crt_data(). Modes: - 0: total formulation - 1: updated formulation Notes ----- This is not a proper Term! """ arg_types = ('material', 'virtual', 'state') arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'), 'state' : 'D'} integration = ('cell', 'facet_extra')
[docs] @staticmethod def integrate(out, val_qp, vg, fmode): if fmode == 2: out[:] = val_qp status = 0 else: status = vg.integrate(out, val_qp, fmode) return status
[docs] @staticmethod def function(out, fun, *args): return fun(out, *args)
def __init__(self, *args, **kwargs): Term.__init__(self, *args, **kwargs) self.stress_cache = None
[docs] def compute_stress(self, mat, family_data, **kwargs): out = nm.empty_like(family_data.green_strain) get = family_data.get fargs = [get(name, msg_if_none=_msg_missing_data) for name in self.family_data_names] self.stress_function(out, mat, *fargs, **kwargs) return out
[docs] def compute_tan_mod(self, mat, family_data, **kwargs): shape = list(family_data.green_strain.shape) shape[-1] = shape[-2] out = nm.empty(shape, dtype=nm.float64) get = family_data.get fargs = [get(name, msg_if_none=_msg_missing_data) for name in self.family_data_names] self.tan_mod_function(out, mat, *fargs, **kwargs) return out
[docs] def get_fargs(self, mat, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(state) name = state.name fd = self.get_family_data(state, self.region, self.integral, self.geometry_types[name], self.arg_steps[name], self.arg_derivatives[name]) if mode == 'weak': if diff_var is None: stress = self.compute_stress(mat, fd, **kwargs) self.stress_cache = stress tan_mod = nm.array([0], ndmin=4, dtype=nm.float64) fmode = 0 else: stress = self.stress_cache if stress is None: stress = self.compute_stress(mat, fd, **kwargs) tan_mod = self.compute_tan_mod(mat, fd, **kwargs) fmode = 1 return (self.weak_function, stress, tan_mod, fd.mtx_f, fd.det_f, vg, fmode, self.hyperelastic_mode) elif mode in ('el_avg', 'qp'): if term_mode == 'strain': out_qp = fd.green_strain elif term_mode == 'stress': out_qp = self.compute_stress(mat, fd, **kwargs) else: raise ValueError('unsupported term mode in %s! (%s)' % (self.name, term_mode)) fmode = {'el_avg' : 1, 'qp' : 2}[mode] return self.integrate, out_qp, vg, fmode else: raise ValueError('unsupported evaluation mode in %s! (%s)' % (self.name, mode))
[docs] def get_eval_shape(self, mat, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs): from sfepy.mechanics.tensors import dim2sym n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state) sym = dim2sym(dim) if mode != 'qp': n_qp = 1 return (n_el, n_qp, sym, 1), state.dtype
[docs] class DeformationGradientTerm(Term): r""" Deformation gradient :math:`\ull{F}` in quadrature points for `term_mode='def_grad'` (default) or the jacobian :math:`J` if `term_mode='jacobian'`. Supports 'eval', 'el_avg' and 'qp' evaluation modes. :Definition: .. math:: \ull{F} = \pdiff{\ul{x}}{\ul{X}}|_{qp} = \ull{I} + \pdiff{\ul{u}}{\ul{X}}|_{qp} \;, \\ \ul{x} = \ul{X} + \ul{u} \;, J = \det{(\ull{F})} :Arguments: - parameter : :math:`\ul{u}` """ name = 'ev_def_grad' arg_types = ('parameter',) arg_shapes = {'parameter' : 'D'} integration = ('cell', 'facet_extra')
[docs] @staticmethod def function(out, vec, vg, econn, term_mode, fmode): d = 1 if term_mode == 'jacobian' else vg.dim out_qp = nm.empty((out.shape[0], vg.n_qp, d, d), dtype=out.dtype) mode = 1 if term_mode == 'jacobian' else 0 terms.dq_def_grad(out_qp, vec, vg.cmap, econn, mode) if fmode == 2: out[:] = out_qp status = 0 else: status = vg.integrate(out, out_qp, fmode) return status
[docs] def get_fargs(self, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): get_saved = False if term_mode == 'act_conf' else True vg, _ = self.get_mapping(parameter, get_saved) vec = self.get_vector(parameter) fmode = {'eval' : 0, 'el_avg' : 1, 'qp' : 2}.get(mode, 1) econn = parameter.field.get_econn( self.get_dof_conn_type(self.arg_names[0]), self.region ) return vec, vg, econn, term_mode, fmode
[docs] def get_eval_shape(self, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(parameter) if mode != 'qp': n_qp = 1 if term_mode == 'jacobian': return (n_el, n_qp, 1, 1), parameter.dtype else: # 'def_grad' return (n_el, n_qp, dim, dim), parameter.dtype