Source code for sfepy.discrete.fem.mappings

"""
Finite element reference mappings.
"""
import numpy as nm

from sfepy import site_config
from sfepy.base.base import get_default, output
from sfepy.base.mem_usage import raise_if_too_large
from sfepy.discrete.common.mappings import Mapping, PyCMapping
from sfepy.discrete import PolySpace
from sfepy.linalg.utils import invs_fast, dets_fast
from sfepy.linalg import dot_sequences


[docs] def tranform_coors_to_lower_dim(coors, to_dim): """ Transform element coordinates into XY plane. See: https://math.stackexchange.com/questions/1167717/transform-a-plane-to-the-xy-plane https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle """ if coors.shape[-1] == 3 and to_dim == 2: bv = nm.cross(coors[:, 1, :] - coors[:, 0, :], coors[:, -1, :] - coors[:, 0, :]) b = nm.linalg.norm(bv, axis=1) ab = nm.sqrt(bv[:, 0]**2 + bv[:, 1]**2) cphi = bv[:, 2] / b sphi = ab / b mtxR = nm.eye(3, 3) * cphi[:, None, None] idxs = nm.where(nm.abs(ab) > 1e-16)[0] if len(idxs) > 0: u1 = bv[idxs, 1] / ab[idxs] u2 = - bv[idxs, 0] / ab[idxs] cphi1 = 1 - cphi[idxs] sphi = sphi[idxs] R0 = nm.array([ [u1**2 * cphi1, u1 * u2 * cphi1, u2 * sphi], [u1 * u2 * cphi1, u2**2 * cphi1, -u1 * sphi], [-u2 * sphi, u1 * sphi, 0] ]).transpose(2, 0, 1) mtxR[idxs, ...] += R0 out = nm.einsum('qij,qkj->qki', mtxR, coors, optimize=True) return out[:, :, :to_dim] else: msg = (f'Coordinate transformation from dimension {coors.shape[-1]}' f' to dimension {to_dim} is not supported!') raise NotImplemented(msg)
[docs] def eval_mapping_data_in_qp(coors, conn, bf_g, weights, ebf_g=None, is_face=False, eps=1e-15, se_conn=None, se_bf_bg=None, ecoors=None): """ Evaluate mapping data. Parameters ---------- coors: numpy.ndarray The nodal coordinates. conn: numpy.ndarray The element connectivity. bf_g: numpy.ndarray The derivatives of the domain basis functions with respect to the reference coordinates. weights: numpy.ndarray The weights of the quadrature points. ebf_g: numpy.ndarray The derivatives of the field basis functions with respect to the reference coordinates. is_face: bool Is it the boundary of a region? eps: float The tolerance for the normal vectors calculation. se_conn: numpy.ndarray The connectivity for the calculation of surface derivatives. se_bf_bg: numpy.ndarray The surface basis function derivatives with respect to the reference coordinates. ecoors: numpy.ndarray The element nodal coordinates. Returns ------- det: numpy.ndarray The determinant of the mapping evaluated in integration points. volume: numpy.ndarray The element (volume or surface) volumes in integration points. bfg: numpy.ndarray The derivatives of the basis functions with respect to the spatial coordinates. Can be evaluated either for surface elements if `bf_g`, `se_conn`, and `se_bf_bg` are given. normal: numpy.ndarray The normal vectors for the surface elements in integration points. """ if ecoors is None: ecoors = coors[conn, :] if bf_g.ndim == 4: mtxRM = nm.einsum('cqij,cjk->cqik', bf_g, ecoors, optimize=True) else: mtxRM = nm.einsum('qij,cjk->cqik', bf_g, ecoors, optimize=True) n_el, n_qp = mtxRM.shape[:2] if is_face: # outward unit normal vector dim = coors.shape[1] normal = nm.ones((n_el, n_qp, dim, 1), dtype=nm.float64) if dim == 1: det = nm.tile(weights, (n_el, 1)).reshape(n_el, n_qp, 1, 1) ii = nm.where(conn == 0)[0] normal[ii] *= -1.0 elif dim == 2: c1, c2 = mtxRM[..., 0], mtxRM[..., 1] det0 = nm.sqrt(c1**2 + c2**2).reshape(n_el, n_qp, 1, 1) det = det0 * weights[..., None, None] det0[nm.abs(det0) < eps] = 1.0 normal[..., 0, :] = c2 normal[..., 1, :] = -c1 normal /= det0 elif dim == 3: j012 = mtxRM[..., 0, :].T j345 = mtxRM[..., 1, :].T c1 = (j012[1] * j345[2] - j345[1] * j012[2]).T c2 = (j012[0] * j345[2] - j345[0] * j012[2]).T c3 = (j012[0] * j345[1] - j345[0] * j012[1]).T det0 = nm.sqrt(c1**2 + c2**2 + c3**2).reshape(n_el, n_qp, 1, 1) det = det0 * weights[..., None, None] det0[nm.abs(det0) < eps] = 1.0 normal[..., 0, 0] = c1 normal[..., 1, 0] = -c2 normal[..., 2, 0] = c3 normal /= det0 else: # det0 = nm.linalg.det(mtxRM) det0 = dets_fast(mtxRM) if nm.any(det0 <= 0.0): raise ValueError('warp violation!') det = det0 * weights det = det.reshape(n_el, n_qp, 1, 1) normal = None if ebf_g is not None: if is_face and se_conn is not None and se_bf_bg is not None: mtxRM = nm.einsum('cqij,cjk->cqik', se_bf_bg, coors[se_conn, :], optimize=True) mtxRMI = invs_fast(mtxRM) bfg = nm.einsum('cqij,cqjk->cqik', mtxRMI, ebf_g, optimize=True) else: mtxRMI = invs_fast(mtxRM, det0) es_arg2 = 'x' if ebf_g.shape[0] == 1 else 'c' bfg = nm.einsum(f'cqij,{es_arg2}qjk->cqik', mtxRMI, ebf_g, optimize=True) else: bfg = None volume = nm.sum(det, axis=1).reshape((n_el, 1, 1, 1)) return det, volume, bfg, normal
[docs] class FEMapping(Mapping): """ Base class for finite element mappings. """ def __init__(self, coors, conn, poly_space=None, gel=None, order=1): self.coors = coors self.conn = conn try: nm.take(self.coors, self.conn) except IndexError: output('coordinates shape: %s' % list(coors.shape)) output('connectivity: min: %d, max: %d' % (conn.min(), conn.max())) msg = 'incompatible connectivity and coordinates (see above)' raise IndexError(msg) self.n_el, self.n_ep = conn.shape self.dim = self.coors.shape[1] if isinstance(gel, dict): poly_space = {} for k, v in gel.items(): poly_space[k] = PolySpace.any_from_args(None, v, order, basis='lagrange', force_bubble=False) elif poly_space is None: poly_space = PolySpace.any_from_args(None, gel, order, basis='lagrange', force_bubble=False) self.poly_space = poly_space self.indices = None
[docs] def get_geometry(self): """ Return reference element geometry as a GeometryElement instance. """ if isinstance(self.poly_space, dict): return {k: v.geometry for k, v in self.poly_space.items()} else: return self.poly_space.geometry
[docs] def eval_basis(self, coors, diff=False, grad_axes=None): """ Evaluate basis functions or their gradients in given coordinates. """ if isinstance(self.poly_space, dict): bf = {k: v.eval_basis(coors[k], diff=diff) for k, v in self.poly_space.items()} else: bf = self.poly_space.eval_basis(coors, diff=diff) indices = self.indices if indices is not None: ii = max(self.dim - 1, 1) if isinstance(indices, dict): # Treat elements with different facet types, e.g. wedges n = max(len(v) for v in indices.values()) bf_ = nm.zeros((len(indices), bf[0].shape[0], ii, n), dtype=nm.float64) if diff and grad_axes is not None: for k, v in indices.items(): bf_[k, ..., :v.shape[0]] =\ bf[k][..., grad_axes[k], :][..., v] else: for k, v in indices.items(): bf_[k, ..., :v.shape[0]] = bf[k][..., :ii:, v] bf = bf_ else: bf = nm.ascontiguousarray(bf[..., :ii:, indices]) return bf
[docs] def set_basis_indices(self, indices): """ Set indices to cell-based basis that give the facet-based basis. """ self.indices = indices
[docs] def get_physical_qps(self, qp_coors): """ Get physical quadrature points corresponding to given reference element quadrature points. Returns ------- qps : array The physical quadrature points ordered element by element, i.e. with shape (n_el, n_qp, dim). """ bf = self.eval_basis(qp_coors) if isinstance(bf, dict): sh = self.conn.shape nqp = max(v.shape[0] for v in bf.values()) bf_ = nm.zeros((sh[0], nqp, 1, sh[1]), dtype=nm.float64) ft = nm.count_nonzero(nm.diff(nm.sort(self.conn)), axis=1) + 1 for k, v in bf.items(): idxs = ft == k if nm.any(idxs): bf_[idxs, :v.shape[0], :, :k] = v qps = dot_sequences(bf_[..., 0, :], self.coors[self.conn]) else: qps = nm.dot(nm.atleast_2d(bf.squeeze()), self.coors[self.conn]) # Reorder so that qps are really element by element. qps = nm.ascontiguousarray(nm.swapaxes(qps, 0, 1)) return qps
[docs] def get_mapping(self, qp_coors, weights, bf=None, poly_space=None, ori=None, transform=None, is_face=False, fc_bf_map=None, extra=(None, None, None)): """ Get the mapping for given quadrature points, weights, and polynomial space. Parameters ---------- qp_coors: numpy.ndarray The coordinates of the integration points. weights: The integration weights. bf: numpy.ndarray The basis functions. poly_space: PolySpace instance The PolySpace instance. ori: numpy.ndarray Element orientation, used by hierarchical basis. transform: numpy.ndarray The transformation matrix applied to the basis functions. is_face: bool Is it the boundary of a region? fc_bf_map: tuple The additional info to remap face derivatives of wedge elements: - fc_bf_map[0]: id of face group (triangle or quad) - fc_bf_map[1]: position of inplane derivatives (xy-axes) extra: tuple The extra data for surface derivatives: - the derivatives of the field boundary basis functions with respect to the reference coordinates - the boundary connectivity - the derivatives of the domain boundary basis functions with respect to the reference coordinates Returns ------- pycmap: PyCMapping instance The domain mapping data. """ poly_space = get_default(poly_space, self.poly_space) if fc_bf_map is not None: bf_g = self.eval_basis(qp_coors, diff=True, grad_axes=fc_bf_map[1]) bf_g = nm.ascontiguousarray(bf_g[fc_bf_map[0]]) else: bf_g = self.eval_basis(qp_coors, diff=True) if nm.allclose(bf_g, 0.0) and self.dim > 1: raise ValueError('zero basis function gradient!') if not is_face: ebf_g = poly_space.eval_basis(qp_coors, diff=True, ori=ori, force_axis=True, transform=transform) size = ebf_g.nbytes * self.n_el raise_if_too_large(size, site_config.refmap_memory_factor()) se_conn, se_bf_bg = None, None else: se_conn, se_bf_bg, ebf_g = extra tdim = poly_space.geometry.dim if not is_face and tdim < self.dim: ecoors = tranform_coors_to_lower_dim(self.coors[self.conn, :], tdim) else: ecoors = None margs = eval_mapping_data_in_qp(self.coors, self.conn, bf_g, weights, ebf_g, is_face=is_face, se_conn=se_conn, se_bf_bg=se_bf_bg, ecoors=ecoors) if bf is None: bf = nm.array([[[[0.]]]]) elif len(bf.shape) == 3: bf = bf[None, ...] margs = (nm.ascontiguousarray(bf),) + margs + (tdim,) pycmap = PyCMapping(*margs) return pycmap