#!/usr/bin/env python
"""
Plot conditions numbers w.r.t. polynomial approximation order of reference
element matrices for various FE polynomial spaces (bases).
"""
import sys
sys.path.append('.')
from argparse import ArgumentParser
import os.path as op
from functools import partial
import numpy as nm
import matplotlib.pyplot as plt
from sfepy import data_dir
from sfepy.base.base import output, assert_
from sfepy.base.timing import Timer
from sfepy.discrete import FieldVariable, Material, Integral
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.solvers import eig
from sfepy.mechanics.matcoefs import stiffness_from_lame
helps = {
'basis' :
'name of the FE basis [default: %(default)s]',
'max_order' :
'maximum order of polynomials [default: %(default)s]',
'matrix_type' :
'matrix type [default: %(default)s]',
'geometry' :
'reference element geometry, one of "2_3", "2_4", "3_4", "3_8"'
' [default: %(default)s]',
'output_dir' :
'output directory',
'no_show' :
'do not show the figures',
}
[docs]
def main():
parser = ArgumentParser(description=__doc__)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('-b', '--basis', metavar='name',
action='store', dest='basis',
default='lagrange', help=helps['basis'])
parser.add_argument('-n', '--max-order', metavar='order', type=int,
action='store', dest='max_order',
default=10, help=helps['max_order'])
parser.add_argument('-m', '--matrix', action='store', dest='matrix_type',
choices=['laplace', 'elasticity', 'smass', 'vmass'],
default='laplace', help=helps['matrix_type'])
parser.add_argument('-g', '--geometry', metavar='name',
action='store', dest='geometry',
default='2_4', help=helps['geometry'])
parser.add_argument('-o', '--output-dir', metavar='path',
action='store', dest='output_dir',
default=None, help=helps['output_dir'])
parser.add_argument('--no-show',
action='store_false', dest='show',
default=True, help=helps['no_show'])
options = parser.parse_args()
dim, n_ep = int(options.geometry[0]), int(options.geometry[2])
output('reference element geometry:')
output(' dimension: %d, vertices: %d' % (dim, n_ep))
n_c = {'laplace' : 1, 'elasticity' : dim,
'smass' : 1, 'vmass' : dim}[options.matrix_type]
output('matrix type:', options.matrix_type)
output('number of variable components:', n_c)
output('polynomial space:', options.basis)
output('max. order:', options.max_order)
mesh = Mesh.from_file(data_dir + '/meshes/elements/%s_1.mesh'
% options.geometry)
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
orders = nm.arange(1, options.max_order + 1, dtype=nm.int32)
conds = []
for order in orders:
output('order:', order, '...')
field = Field.from_args('fu', nm.float64, n_c, omega,
approx_order=order,
space='H1', poly_space_basis=options.basis)
quad_order = 2 * field.approx_order
output('quadrature order:', quad_order)
integral = Integral('i', order=quad_order)
qp, _ = integral.get_qp(options.geometry)
output('number of quadrature points:', qp.shape[0])
u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')
m = Material('m', D=stiffness_from_lame(dim, 1.0, 1.0))
if options.matrix_type == 'laplace':
term = Term.new('dw_laplace(v, u)',
integral, omega, v=v, u=u)
n_zero = 1
elif options.matrix_type == 'elasticity':
term = Term.new('dw_lin_elastic(m.D, v, u)',
integral, omega, m=m, v=v, u=u)
n_zero = (dim + 1) * dim // 2
elif options.matrix_type in ('smass', 'vmass'):
term = Term.new('dw_dot(v, u)',
integral, omega, v=v, u=u)
n_zero = 0
term.setup()
output('assembling...')
timer = Timer(start=True)
mtx, iels = term.evaluate(mode='weak', diff_var='u')
output('...done in %.2f s' % timer.stop())
mtx = mtx[0, 0]
try:
assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10)
except:
from sfepy.base.base import debug; debug()
output('matrix shape:', mtx.shape)
eigs = eig(mtx, solver_kind='eig.sgscipy', eigenvectors=False)
eigs.sort()
# Zero 'true' zeros.
eigs[:n_zero] = 0.0
ii = nm.where(eigs < 0.0)[0]
if len(ii):
output('matrix is not positive semi-definite!')
ii = nm.where(eigs[n_zero:] < 1e-12)[0]
if len(ii):
output('matrix has more than %d zero eigenvalues!' % n_zero)
output('smallest eigs:\n', eigs[:10])
ii = nm.where(eigs > 0.0)[0]
emin, emax = eigs[ii[[0, -1]]]
output('min:', emin, 'max:', emax)
cond = emax / emin
conds.append(cond)
output('condition number:', cond)
output('...done')
if options.output_dir is not None:
indir = partial(op.join, options.output_dir)
else:
indir = None
plt.rcParams['font.size'] = 12
plt.rcParams['lines.linewidth'] = 3
fig, ax = plt.subplots()
ax.semilogy(orders, conds)
ax.set_xticks(orders)
ax.set_xticklabels(orders)
ax.set_xlabel('polynomial order')
ax.set_ylabel('condition number')
ax.set_title(f'{options.basis.capitalize()} basis')
ax.grid()
plt.tight_layout()
if indir is not None:
fig.savefig(indir(f'{options.basis}-{options.matrix_type}-'
f'{options.geometry}-{options.max_order}-xlin.png'),
bbox_inches='tight')
fig, ax = plt.subplots()
ax.loglog(orders, conds)
ax.set_xticks(orders)
ax.set_xticklabels(orders)
ax.set_xlabel('polynomial order')
ax.set_ylabel('condition number')
ax.set_title(f'{options.basis.capitalize()} basis')
ax.grid()
plt.tight_layout()
if indir is not None:
fig.savefig(indir(f'{options.basis}-{options.matrix_type}-'
f'{options.geometry}-{options.max_order}-xlog.png'),
bbox_inches='tight')
if options.show:
plt.show()
if __name__ == '__main__':
main()