from __future__ import absolute_import
from __future__ import print_function
import numpy as nm
from .bspline import BSpline
from sfepy.base.base import Struct
from six.moves import range
from sfepy.base.compat import lstsq
[docs]
class SplineBox(Struct):
    """
    B-spline geometry parametrization. The geometry can be modified
    by moving spline control points.
    """
[docs]
    @staticmethod
    def gen_cp_idxs(ncp):
        dim = len(ncp)
        if dim == 2:
            idxs = nm.mgrid[0:ncp[0], 0:ncp[1]]
        elif dim == 3:
            idxs = nm.mgrid[0:ncp[0], 0:ncp[1], 0:ncp[2]]
        else:
            raise(ValueError)
        cp_idxs = []
        mul_idx = [1]
        for ii in range(dim - 1):
            mul_idx.append(mul_idx[ii] * ncp[ii])
        cp_idxs = []
        for ii in range(dim):
            cp_idxs.append(idxs[ii].reshape(nm.prod(ncp), order='F'))
        return cp_idxs, nm.array(mul_idx) 
[docs]
    @staticmethod
    def create_spb(bbox, coors, degree=3, nsg=None):
        nc, cdim = coors.shape
        inside = nm.ones((nc,), dtype=bool)
        nsg = nm.ones((cdim,), dtype=int) if nsg is None else nm.array(nsg)
        for idim in range(cdim):
            inrange = nm.logical_and(coors[:, idim] >= bbox[idim][0],
                                     coors[:, idim] <= bbox[idim][1])
            inside = nm.logical_and(inside, inrange)
        ncp_tot = 1
        base, uidx, ncp, cp = [], [], [], []
        for idim in range(cdim):
            ucoors, ucoors_idx = nm.unique(coors[inside, idim],
                                           return_inverse=True)
            ncp0 = degree + nsg[idim]
            bspl = BSpline(degree, ncp=ncp0)
            bspl.make_knot_vector(knot_range=(bbox[idim][0], bbox[idim][1]))
            knots = bspl.get_knot_vector()
            cp0 = nm.zeros((ncp0,), dtype=nm.double)
            for j in range(cp0.shape[0]):
                cp0[j] = nm.sum(knots[(j + 1):(j + degree + 1)]) / degree
            base.append(bspl.eval_basis(t=ucoors, return_val=True))
            uidx.append(ucoors_idx)
            ncp.append(ncp0)
            cp.append(cp0)
            ncp_tot *= ncp0
        cp_coors = nm.zeros((ncp_tot, cdim), dtype=nm.double)
        cp_idx, mul_cp_idx = SplineBox.gen_cp_idxs(ncp)
        for ii in range(cdim):
            cp_coors[:, ii] = cp[ii][cp_idx[ii]]
        return {'base': base,
                'uidx': uidx,
                'ncp': ncp,
                'cp_idx': cp_idx,
                'mul_cp_idx': mul_cp_idx,
                'cp_coors': cp_coors,
                'idxs_inside': inside} 
    def __init__(self, bbox, coors, nsg=None, field=None):
        """
        Create a SplineBox.
        Parameters
        ----------
        bbox : array
            The mesh bounding box.
        coors : array
            The coordinates of mesh nodes.
        nsg : array
            The number of segments.
        """
        bbox = nm.asarray(bbox)
        coors = nm.asarray(coors)
        self.coors = coors.copy()
        self.cdim = coors.shape[1]
        if field is not None:
            field = nm.asarray(field)
            if len(field.shape) <= 1:
                field = field[..., nm.newaxis]
            self.field = field.copy()
        else:
            self.field = self.coors
        self.__dict__.update(self.create_spb(bbox, coors, nsg=nsg))
        if field is not None:
            if hasattr(self, 'idxs_inside'):
                b = field[self.idxs_inside, ...]
            else:
                b = field
            a = self.get_box_matrix()
            self.cp_values = lstsq(a, b)[0]
        else:
            self.cp_values = self.cp_coors
        self.cp_values0 = self.cp_values.copy()
[docs]
    def get_coors_shape(self):
        """
        Get the shape of the coordinates.
        """
        return self.coors.shape 
[docs]
    def get_control_points(self, init=False):
        """
        Get the spline control points coordinates.
        Returns
        -------
        cpt_coors : array
            The coordinates of the spline control points.
        init : bool
            If True, return the initial state.
        """
        if init:
            return self.cp_values0
        else:
            return self.cp_values 
[docs]
    def set_control_points(self, cpt_coors, add=False):
        """
        Set the spline control points position.
        Parameters
        ----------
        cpt_coors : array
            The coordinates of the spline control points.
        add : bool
            If True, coors += cpt_coors
        """
        if add:
            self.cp_values += cpt_coors
        else:
            self.cp_values = cpt_coors 
[docs]
    def move_control_point(self, cpoint, val):
        """
        Change shape of spline parametrization.
        Parameters
        ----------
        cpoint : int, list
            The position (index or grid indicies) of the spline control point.
        val : array
            Displacement.
        """
        if type(cpoint) in [list, tuple, nm.ndarray]:
            idx = nm.dot(nm.array(cpoint), self.mul_cp_idx)
        else:
            idx = cpoint
        self.cp_values[idx, :] += val 
[docs]
    def get_box_matrix(self):
        """
        Returns:
            mtx : 2D array
                The matrix containing the coefficients of b-spline
                basis functions.
        """
        ncp, cdim = self.cp_coors.shape
        mtx = nm.ones((self.uidx[0].shape[0], ncp), dtype=nm.double)
        for ii in range(cdim):
            mtx *= self.base[ii][self.uidx[ii], :][:, self.cp_idx[ii]]
        return mtx 
[docs]
    def evaluate(self, cp_values=None, outside=True):
        """
        Evaluate the new position of the mesh coordinates.
        Parameters
        ----------
        cp_values : array
            The actual control point values. If None, use self.control_values.
        outside : bool
            If True, return also the coordinates outside the spline box.
        Returns
        -------
        new_coors : array
            The new position of the mesh coordinates.
        """
        if cp_values is None:
            cp_values = self.cp_values
        mtx = self.get_box_matrix()
        if outside and hasattr(self, 'idxs_inside'):
            field = self.field.copy()
            field[self.idxs_inside, ...] = nm.dot(mtx, cp_values)
            return field
        else:
            return nm.dot(mtx, cp_values) 
[docs]
    def evaluate_derivative(self, cpoint, dirvec):
        """
        Evaluate derivative of the spline
        in a given control point and direction.
        Parameters
        ----------
        cpoint : int, list
            The position (index or grid indicies) of the spline control point.
        dirvec : array
            The directional vector.
        Returns
        -------
        diff : array
            The derivative field.
        """
        if type(cpoint) in [list, tuple, nm.ndarray]:
            idxs = cpoint
        else:
            idxs = []
            aux = cpoint
            for ii in range(self.cdim):
                idxs.append(aux // self.mul_cp_idx[-(ii + 1)])
                aux = aux % self.mul_cp_idx[-(ii + 1)]
            idxs = idxs[::-1]
        aux = nm.ones((self.uidx[0].shape[0],), dtype=nm.double)
        for ii in range(self.cdim):
            aux *= self.base[ii][self.uidx[ii], idxs[ii]]
        dirvec = nm.asarray(dirvec)
        return nm.dot(aux[:, nm.newaxis],
                      nm.reshape(dirvec, (1, self.cp_values.shape[1]))) 
[docs]
    def write_control_net(self, filename, deform_by_values=True):
        """
        Write the SplineBox shape to the VTK file.
        Parameters
        ----------
        filename : str
            The VTK file name.
        """
        ncp = self.ncp
        npt = nm.prod(ncp)
        f = open(filename, 'w')
        f.write("# vtk DataFile Version 2.6\nspbox file\n"
                "ASCII\nDATASET UNSTRUCTURED_GRID\n\n")
        f.write("POINTS %d float\n" % npt)
        if self.cdim == 2:
            ptformat = "%e %e 0.0\n"
        elif self.cdim == 3:
            ptformat = "%e %e %e\n"
        cp_coors = self.cp_values if deform_by_values else self.cp_coors
        for cpt in cp_coors:
            f.write(ptformat % tuple(cpt))
        cells = nm.array([nm.arange(0, ncp[0] - 1), nm.arange(1, ncp[0])]).T
        cp = ncp[0]
        nc = cp - 1
        for ii in range(1, self.cdim):
            cells1 = []
            ncpi = ncp[ii]
            for jj in range(ncpi):
                cells1.append(cells + jj * cp)
            nc = nc * ncpi
            cells = nm.array([nm.arange(0, ncpi - 1),
                              nm.arange(1, ncpi)]).T * cp
            for jj in range(cp):
                cells1.append(cells + jj)
            nc += (ncpi - 1) * cp
            cells = nm.vstack(cells1)
            cp *= ncp[ii]
        f.write("\nCELLS %d %d\n" % (nc, 3 * nc))
        for ii in cells:
            f.write("2 %d %d\n" % tuple(ii))
        f.write("\nCELL_TYPES %d\n" % nc)
        f.write("3\n" * nc)
        f.write("\nPOINT_DATA %d\n" % npt)
        for ival in range(self.cp_values.shape[1]):
            f.write("\nSCALARS cp_value_%d float 1\n" % (ival + 1))
            f.write("LOOKUP_TABLE default\n")
            f.write(str(b'\n'.join(self.cp_values[:, ival].astype('|S10'))) + '\n')
        f.close() 
 
[docs]
class SplineRegion2D(SplineBox):
    """
    B-spline geometry parametrization. The boundary of the SplineRegion2D
    is defined by BSpline curves.
    """
[docs]
    @staticmethod
    def points_in_poly(points, poly, tol=1e-6):
        """
        Find which points are located inside the polygon.
        """
        poly = nm.array(poly)
        points = nm.array(points)
        inside = nm.zeros((points.shape[0],), dtype=bool)
        p1 = poly[:-1]
        p2 = poly[1:]
        a1 = (p2[:, 1] - p1[:, 1])
        a1nz = nm.where(nm.fabs(a1) > 1e-16)[0]
        a2 = (p2[a1nz, 0] - p1[a1nz, 0]) / a1[a1nz]
        for jj, pt in enumerate(points):
            # on edges?
            if nm.any(nm.linalg.norm(p1 - pt, axis=1) +
                      nm.linalg.norm(p2 - pt, axis=1) -
                      nm.linalg.norm(p1 - p2, axis=1) < tol):
                inside[jj] = True
                continue
            # inside?
            val = nm.logical_and(
                (p1[a1nz, 1] > pt[1]) != (p2[a1nz, 1] > pt[1]),
                pt[0] < (a2*(pt[1] - p1[a1nz, 1]) + p1[a1nz, 0]))
            if (nm.where(val)[0].shape[0] % 2) > 0:
                inside[jj] = True
        return nm.where(inside)[0] 
[docs]
    @staticmethod
    def define_control_points(cp_bnd_coors, ncp):
        """
        Find positions of "inner" control points depending on boundary splines.
        """
        nx, ny = ncp
        grid = nm.zeros(ncp, dtype=nm.int32)
        grid.T.flat = nm.arange(nx * ny)
        coors = nm.zeros((nx * ny, 2), dtype=nm.float64)
        idxs1 = nm.arange(nx)
        idxs2 = nm.arange(1, ny - 1) * nx
        bcnd = nm.hstack([idxs1, idxs2 + nx - 1,
                          idxs1[::-1] + nx * (ny - 1), idxs2[::-1]])
        coors[bcnd, :] = cp_bnd_coors
        for ii in range(1, nx - 1):
            for jj, t in enumerate(nm.linspace(0, 1, ny)[1:-1]):
                c = (1 - t) * coors[ii, :] + t * coors[ii + (ny - 1)*nx, :]
                coors[ii + nx*(jj + 1), :] = c
        inside = grid[1:-1, 1:-1].flatten()
        for iiter in range(5):
            for ii in inside:
                dx = nm.array([0., 0.])
                for jj in [-1, +1, -nx, + nx]:
                    dx -= 0.25 * (coors[ii, :] - coors[ii + jj, :])
                coors[ii] += 0.1 * dx
        return coors 
[docs]
    @staticmethod
    def create_spb(spl_bnd, coors, rho=10):
        """
        Initialize SplineBox knots, control points, base functions, ...
        """
        dim = 2
        if coors.shape[1] != dim:
            print('Only 2D SplineBoxSBnd is supported!')
            raise(ValueError)
        bnd_poly = []
        bnd_cp = []
        for s in spl_bnd:
            s.set_param_n(int(rho))
            bnd_poly.append(s.eval()[:-1])
            bnd_cp.append(s.get_control_points()[:-1, :])
        bnd_poly.append(bnd_poly[0][0, :])
        ncpoints = 1
        base, bspl, uidx, ncp = [], [], [], []
        for si in [0, 1]:
            s = spl_bnd[si]
            bspl0 = BSpline(s.degree, ncp=s.ncp)
            bspl0.set_knot_vector(s.knots)
            bspl.append(bspl0)
            base.append(None)
            uidx.append(None)
            ncp.append(s.ncp)
            ncpoints *= s.ncp
        cp_idx, mul_cp_idx = SplineBox.gen_cp_idxs(ncp)
        cp_coors = SplineRegion2D.define_control_points(nm.vstack(bnd_cp), ncp)
        idxs_inside = SplineRegion2D.points_in_poly(coors, nm.vstack(bnd_poly))
        return {'base': base,
                'bspl': bspl,
                'uidx': uidx,
                'ncp': ncp,
                'cp_idx': cp_idx,
                'mul_cp_idx': mul_cp_idx,
                'cp_coors': cp_coors,
                'idxs_inside': idxs_inside} 
[docs]
    def find_ts(self, coors):
        """
        Function finds parameters (t, s) corresponding to given points (coors).
        """
        from scipy.optimize import minimize
        def ptdist(x, coors, spb):
            for ii in range(spb.cdim):
                spb.base[ii] = spb.bspl[ii].eval_basis(t=x[ii],
                                                       return_val=True)
            coors_approx = spb.evaluate(outside=False)
            return nm.linalg.norm(coors - coors_approx)
        def gen_grid(spb, rho):
            grid = nm.mgrid[0:rho, 0:rho]
            t = nm.linspace(0, 1, rho)
            for ii in range(spb.cdim):
                spb.uidx[ii] = grid[ii, :].reshape(rho**self.cdim, order='F')
                spb.base[ii] = spb.bspl[ii].eval_basis(t=t, return_val=True)
            return spb.evaluate(outside=False)
        rho = 100
        grid = gen_grid(self, rho)
        for ii in range(self.cdim):
            self.uidx[ii] = nm.array([0])
        ts = nm.zeros((coors.shape[0], self.cdim), dtype=nm.float64)
        for ii, ic in enumerate(coors):
            idx = nm.argmin(nm.linalg.norm(grid - ic, axis=1))
            x0 = nm.array([idx % rho, idx // rho]) / (rho - 1.)
            ts[ii] = minimize(lambda x: ptdist(x, ic, self), x0,
                              method='nelder-mead',
                              options={'xatol': 1e-5, 'disp': False}).x
        return ts 
    def __init__(self, spl_bnd, coors, rho=1e3):
        """
        Create a SplineBox which boundary is defined by B-spline curves.
        Parameters
        ----------
        spl_bnd : list
            The list of BSpline objects (counterclockwise)
            defining the SplineBox boundary.
        coors : array
            The coordinates of the mesh nodes.
        rho : float
            The density of points defining the boundary polygon.
        """
        coors = nm.asarray(coors)
        self.__dict__.update(self.create_spb(spl_bnd, coors, rho))
        self.cdim = coors.shape[1]
        self.coors = coors.copy()
        self.field = self.coors
        self.cp_values = self.cp_coors
        self.ts = self.find_ts(coors[self.idxs_inside, :])
        for idim in range(self.cdim):
            ucoors, ucoors_idx = nm.unique(self.ts[:, idim],
                                           return_inverse=True)
            self.base[idim] = self.bspl[idim].eval_basis(t=ucoors,
                                                         return_val=True)
            self.uidx[idim] = ucoors_idx