.. _large_deformation-active_fibres: large_deformation/active_fibres.py ================================== **Description** Nearly incompressible hyperelastic material model with active fibres. Large deformation is described using the total Lagrangian formulation. Models of this kind can be used in biomechanics to model biological tissues, e.g. muscles. Find :math:\ul{u} such that: .. math:: \intl{\Omega\suz}{} \left( \ull{S}\eff(\ul{u}) + K(J-1)\; J \ull{C}^{-1} \right) : \delta \ull{E}(\ul{v}) \difd{V} = 0 \;, \quad \forall \ul{v} \;, where .. list-table:: :widths: 20 80 * - :math:\ull{F} - deformation gradient :math:F_{ij} = \pdiff{x_i}{X_j} * - :math:J - :math:\det(F) * - :math:\ull{C} - right Cauchy-Green deformation tensor :math:C = F^T F * - :math:\ull{E}(\ul{u}) - Green strain tensor :math:E_{ij} = \frac{1}{2}(\pdiff{u_i}{X_j} + \pdiff{u_j}{X_i} + \pdiff{u_m}{X_i}\pdiff{u_m}{X_j}) * - :math:\ull{S}\eff(\ul{u}) - effective second Piola-Kirchhoff stress tensor The effective stress :math:\ull{S}\eff(\ul{u}) incorporates also the effects of the active fibres in two preferential directions: .. math:: \ull{S}\eff(\ul{u}) = \mu J^{-\frac{2}{3}}(\ull{I} - \frac{1}{3}\tr(\ull{C}) \ull{C}^{-1}) + \sum_{k=1}^2 \tau^k \ull{\omega}^k \;. The first term is the neo-Hookean term and the sum add contributions of the two fibre systems. The tensors :math:\ull{\omega}^k = \ul{d}^k\ul{d}^k are defined by the fibre system direction vectors :math:\ul{d}^k (unit). For the one-dimensional tensions :math:\tau^k holds simply (:math:^k omitted): .. math:: \tau = A f_{\rm max} \exp{\left\{-(\frac{\epsilon - \varepsilon_{\rm opt}}{s})^2\right\}} \mbox{ , } \epsilon = \ull{E} : \ull{\omega} \;. .. image:: /../gallery/images/large_deformation-active_fibres.png :download:source code  .. literalinclude:: /../examples/large_deformation/active_fibres.py