.. _diffusion-sinbc: diffusion/sinbc.py ================== **Description** Laplace equation with Dirichlet boundary conditions given by a sine function and constants. Find :math:t such that: .. math:: \int_{\Omega} c \nabla s \cdot \nabla t = 0 \;, \quad \forall s \;. This example demonstrates how to use a hierarchical basis approximation - it uses the fifth order Lobatto polynomial space for the solution. The adaptive linearization is applied in order to save viewable results, see both the options keyword and the post_process() function that computes the solution gradient. Use the following commands to view the results (assuming default output directory and names):: $./postproc.py -b -d't,plot_warp_scalar,rel_scaling=1' 2_4_2_refined_t.vtk --wireframe$ ./postproc.py -b 2_4_2_refined_grad.vtk The :class:sfepy.discrete.fem.meshio.UserMeshIO class is used to refine the original two-element mesh before the actual solution. .. image:: /../doc/images/gallery/diffusion-sinbc_grad.png .. image:: /../doc/images/gallery/diffusion-sinbc_t.png :download:source code  .. literalinclude:: /../examples/diffusion/sinbc.py