.. _diffusion-poisson_parametric_study: diffusion/poisson_parametric_study.py ===================================== **Description** Poisson equation. This example demonstrates parametric study capabilities of Application classes. In particular (written in the strong form): .. math:: c \Delta t = f \mbox{ in } \Omega, t = 2 \mbox{ on } \Gamma_1 \;, t = -2 \mbox{ on } \Gamma_2 \;, f = 1 \mbox{ in } \Omega_1 \;, f = 0 \mbox{ otherwise,} where :math:`\Omega` is a square domain, :math:`\Omega_1 \in \Omega` is a circular domain. Now let's see what happens if :math:`\Omega_1` diameter changes. Run:: sfepy-run sfepy/examples/diffusion/poisson_parametric_study.py and then look in 'output/r_omega1' directory, try for example:: sfepy-view output/r_omega1/circles_in_square*.vtk -2 Remark: this simple case could be achieved also by defining :math:`\Omega_1` by a time-dependent function and solve the static problem as a time-dependent problem. However, the approach below is much more general. Find :math:`t` such that: .. math:: \int_{\Omega} c \nabla s \cdot \nabla t = 0 \;, \quad \forall s \;. .. image:: /../doc/images/gallery/diffusion-poisson_parametric_study.png :download:`source code ` .. literalinclude:: /../sfepy/examples/diffusion/poisson_parametric_study.py