.. _linear_elasticity-shell10x_cantilever_interactive: linear_elasticity/shell10x_cantilever_interactive.py ==================================================== **Description** Bending of a long thin cantilever beam computed using the :class:dw_shell10x  term. Find displacements of the central plane :math:\ul{u}, and rotations :math:\ul{\alpha} such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}, \ul{\beta}) e_{kl}(\ul{u}, \ul{\alpha}) = - \int_{\Gamma_{right}} \ul{v} \cdot \ul{f} \;, \quad \forall \ul{v} \;, where :math:D_{ijkl} is the isotropic elastic tensor, given using the Young's modulus :math:E and the Poisson's ratio :math:\nu. The variable u below holds both :math:\ul{u} and :math:\ul{\alpha} DOFs. For visualization, it is saved as two fields u_disp and u_rot, corresponding to :math:\ul{u} and :math:\ul{\alpha}, respectively. The material, loading and discretization parameters can be given using command line options. Besides the default straight beam, two coordinate transformations can be applied (see the --transform option): - bend: the beam is bent - twist: the beam is twisted For the straight and bent beam a comparison with the analytical solution coming from the Euler-Bernoulli theory is shown. See also :ref:linear_elasticity-shell10x_cantilever example. Usage Examples -------------- See all options:: python examples/linear_elasticity/shell10x_cantilever_interactive.py -h Apply the bending transformation to the beam domain coordinates, plot convergence curves w.r.t. number of elements:: python examples/linear_elasticity/shell10x_cantilever_interactive.py output -t bend -p Apply the twisting transformation to the beam domain coordinates, change number of cells, show the solution:: python examples/linear_elasticity/shell10x_cantilever_interactive.py output -t twist -n 2,51,3 -s :download:source code  .. literalinclude:: /../examples/linear_elasticity/shell10x_cantilever_interactive.py