.. _linear_elasticity-shell10x_cantilever: linear_elasticity/shell10x_cantilever.py ======================================== **Description** Bending of a long thin cantilever beam computed using the :class:dw_shell10x  term. Find displacements of the central plane :math:\ul{u}, and rotations :math:\ul{\alpha} such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}, \ul{\beta}) e_{kl}(\ul{u}, \ul{\alpha}) = - \int_{\Gamma_{right}} \ul{v} \cdot \ul{f} \;, \quad \forall \ul{v} \;, where :math:D_{ijkl} is the isotropic elastic tensor, given using the Young's modulus :math:E and the Poisson's ratio :math:\nu. The variable u below holds both :math:\ul{u} and :math:\ul{\alpha} DOFs. For visualization, it is saved as two fields u_disp and u_rot, corresponding to :math:\ul{u} and :math:\ul{\alpha}, respectively. See also :ref:linear_elasticity-shell10x_cantilever_interactive example. View the results using:: python postproc.py shell10x.vtk -d 'u_disp,plot_displacements,rel_scaling=1.0' --opacity='wireframe=0.5' -b --wireframe .. image:: /../gallery/images/linear_elasticity-shell10x_cantilever.png :download:source code  .. literalinclude:: /../examples/linear_elasticity/shell10x_cantilever.py